【题目】如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
【答案】(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.
【解析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(4,),D(4,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.
(1)①如图1,
,
反比例函数为,
当时,,
,
当时,
,
,
,
设直线的解析式为,
,
,
直线的解析式为;
②四边形是菱形,
理由如下:如图2,
由①知,,
轴,
,
点是线段的中点,
,
当时,由得,,
由得,,
,,
,
,
四边形为平行四边形,
,
四边形是菱形;
(2)四边形能是正方形,
理由:当四边形是正方形,记,的交点为,
,
当时,,
,,
,
,,,
,
,
.
科目:初中数学 来源: 题型:
【题目】如图菱形ABCD,四个顶点分别是A(-2,-1),B(1,-3),C(4,-1),D(1,1).将菱形沿x轴负方向平移3个单位长度得到菱形A1B1C1D1,再将菱形ABCD沿y轴正方向平移4个单位长度得到菱形A2B2C2D2,画出平移后的两个图形并分别写出它们的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.
(1)求证:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:
(1)用含 的代数式表示地面的总面积 ;
(2)已知 ,且客厅面积是卫生间面积的 倍,如果铺 平方米地砖的平均费用为 元,那么小王铺地砖的总费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
(发现证明)小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
(类比引申)如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
(探究应用)如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“等积线”,等积线被 这个平面图形截得的线段叫做该图形的“等积线段”(例如三角形的中线就是三角形的等积线段).已 知菱形的边长为 4,且有一个内角为 60°,设它的等积线段长为 m,则 m 的取值范围是( )
A. m=4 或 m=4 B. 4≤m≤4 C. 2 D. 2 ≤m≤4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图8,在平面直角坐标系中,点A坐标为(0,3),点B(,)是以OA为直径的⊙M上的一点,且tan∠AOB=,BH⊥轴,H为垂足,点C(,).
(1)求H点的坐标;
(2)求直线BC的解析式;
(3)直线BC是否与⊙M相切?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com