精英家教网 > 初中数学 > 题目详情

【题目】阅读下面文字并填空:数学课上张老师出了这样一道题:如图,在中,是中线,点的中点,连接.求证:

张老师给出了如下简要要证,就是要证线段的倍分问题,所以有两个思路,思路一:找,故取的中点,连接,只要证即可.这就将证明线段倍分问题______为证明线段相等问题,只要证出______,则结论成立.思路二:变,因为需要找到,于是延长至点,使,只要证______即可.连接,若证出____________则结论成立.”你认为在现阶段可以用思路______来完成这个证明.

【答案】转化;, , ;二

证明过程见详解

【解析】

按照张老师的思路即可填出答案,利用全等三角形的判定及性质来证明,从而有,从而结论可证.所以思路二可以证明.

转化;, , ;二

证明:延长至点,使

∵点的中点

中,

是中线

中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形中,已知,对角线平分,则边的长度为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件元,现在的售价为每件元,每星期可卖出件.市场调查反映:如果每件售价每涨元(售价每件不能高于元),那么每星期少卖件.设每件售价为元(为非负整数),则若要使每星期的利润最大且每星期的销量较大,应为多少元?( )

A. 41 B. 42 C. 42.5 D. 43

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在处接到报告:有受灾群众被困于一座遭水淹的楼顶处,情况危急!救援队伍在处测得的北偏东的方向上(如图所示),队伍决定分成两组:第一组马上下水游向处救人,同时第二组从陆地往正东方向奔跑米到达处,再从处下水游向处救人,已知的北偏东的方向上,且救援人员在水中游进的速度均为米/秒.在陆地上奔跑的速度为米/秒,试问哪组救援队先到处?请说明理由.(参考数据

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

)写出的值;

)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点AABx轴,垂足为点A,过点CCBy轴,垂足为点C,两条垂线相交于点B.

(1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   

(2)折叠图1中的ABC,使点A与点C重合,再将折叠后的图形展开,折痕DEAB于点D,交AC于点E,连接CD,如图2.

请从下列A、B两题中任选一题作答,我选择   题.

A:①求线段AD的长;

②在y轴上,是否存在点P,使得APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

B:①求线段DE的长;

②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边△ABC的边长为12DAB上的动点,过DDEBC于点E,过EEFAC于点F,过FFGAB于点G.GD重合时,AD的长是(

A.9B.8C.4D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则yx之间的函数关系式是( )

A. y=-2x+24(0<x<12) B. y=-x+12(0<x<24)

C. y=2x-24(0<x<12) D. y=x-12(0<x<24)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=x2+bx+cy轴的交于点A(0,3),与x轴的交于点BC,点B的横坐标为2.点A关于抛物线对称轴对称的点为点D,在x轴上有一动点E(t,0),过点E作平行于y轴的直线与抛物线、直线AD的交点分别为P、Q.

(1)求抛物线的解析式;

(2)当点P在线段AC的下方时,求△APC面积的最大值;

(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似.若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案