精英家教网 > 初中数学 > 题目详情
4.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.
(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.

分析 (1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;
②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;
(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式$\frac{OC}{OA}=\frac{OD}{OB}$,得出$\frac{OC′}{OD′}=\frac{OA}{OB}$,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.

解答 (1)证明:①∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵OA=OB,C、D为OA、OB的中点,
∴OC=OD,
∴OC′=OD′,
在△AOC′和△BOD′中,$\left\{\begin{array}{l}{OA=OB}\\{∠AOC′=∠BOD′}\\{OC′=OD′}\end{array}\right.$,
∴△AOC′≌△BOD′(SAS),
∴AC′=BD′;
②延长AC′交BD′于E,交BO于F,如图1所示:
∵△AOC′≌△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,∠OAC′+∠AFO=90°,
∴∠OBD′+∠BFE=90°,
∴∠BEA=90°,
∴AC′⊥BD′;
(2)解:∠AEB=θ成立,理由如下:如图2所示:
∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵CD∥AB,
∴$\frac{OC}{OA}=\frac{OD}{OB}$,
∴$\frac{OC′}{OA}=\frac{OD′}{OB}$,
∴$\frac{OC′}{OD′}=\frac{OA}{OB}$,
又∠AOC′=∠BOD′,
∴△AOC′∽△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,
∴∠AEB=∠AOB=θ.

点评 本题考查了旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.解方程:$\frac{x-3}{x}-2=\frac{3x}{x-3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在?ABCD中,DE⊥AB,DF⊥BC,∠EDF=120°,求∠B与∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,直线l1:y=x+1与直线l2:y=$\frac{1}{2}$x+$\frac{1}{2}$相交于点P(-1,0),直线l1与y轴交于点A,一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B2处后,改为垂直于x轴的方向运动,到达直线l1上的A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,达到直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B2015,A2015,…则当动点C到达A2015处时,运动的总路径的长为(  )
A.22015-2B.22014-1C.22016-2D.22017-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,$\frac{1}{4}$).R(1,1)是抛物线对称轴l上的一点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=-1的距离恒相等;
(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=-1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.
(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.二次函数y=x2-2x-3的图象如图所示,下列说法中错误的是(  )
A.函数图象与y轴的交点坐标是(0,-3)
B.顶点坐标是(1,-3)
C.函数图象与x轴的交点坐标是(3,0)、(-1,0)
D.当x<0时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.与2互为相反数的是(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在函数y=$\frac{1-x}{x-2}$中,自变量x的取值范围是x≠2.

查看答案和解析>>

同步练习册答案