分析 (1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;
②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;
(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式$\frac{OC}{OA}=\frac{OD}{OB}$,得出$\frac{OC′}{OD′}=\frac{OA}{OB}$,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.
解答 (1)证明:①∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵OA=OB,C、D为OA、OB的中点,
∴OC=OD,
∴OC′=OD′,
在△AOC′和△BOD′中,$\left\{\begin{array}{l}{OA=OB}\\{∠AOC′=∠BOD′}\\{OC′=OD′}\end{array}\right.$,
∴△AOC′≌△BOD′(SAS),
∴AC′=BD′;
②延长AC′交BD′于E,交BO于F,如图1所示:
∵△AOC′≌△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,∠OAC′+∠AFO=90°,
∴∠OBD′+∠BFE=90°,
∴∠BEA=90°,
∴AC′⊥BD′;
(2)解:∠AEB=θ成立,理由如下:如图2所示:
∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵CD∥AB,
∴$\frac{OC}{OA}=\frac{OD}{OB}$,
∴$\frac{OC′}{OA}=\frac{OD′}{OB}$,
∴$\frac{OC′}{OD′}=\frac{OA}{OB}$,
又∠AOC′=∠BOD′,
∴△AOC′∽△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,
∴∠AEB=∠AOB=θ.
点评 本题考查了旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 22015-2 | B. | 22014-1 | C. | 22016-2 | D. | 22017-2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 函数图象与y轴的交点坐标是(0,-3) | |
| B. | 顶点坐标是(1,-3) | |
| C. | 函数图象与x轴的交点坐标是(3,0)、(-1,0) | |
| D. | 当x<0时,y随x的增大而减小 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com