【题目】如图1,在矩形中,,,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点.
(1)求线段的长;
(2)如图2,,分别是线段,上的动点(与端点不重合),且,设,.
①写出关于的函数解析式,并求出的最小值;
②是否存在这样的点,使是等腰三角形?若存在,请求出的值;若不存在,请说明理由.
【答案】(1);(2)①当时,有最小值,最小值;②存在.满足条件的的值为或.
【解析】
由翻折可知:,设,则在中,利用勾股定理构建方程即可解决问题.
证明∽,可得,由此即可解决问题.
有两种情形:如图中,当时如图中,当时,作于分别求解即可解决问题.
解:(1)如图1中,
∵四边形是矩形,
∴,,
∴,
由翻折可知:.,设,则.
在中,,
∴,
在中,则有:,
∴,
∴.
(2)①如图2中,
∵,
∴,
∴,
∴,
∴,
在中,,
在中,,
∵,
∴,
∵,,
∴,
∴,
∴,
∴,
∴.
当时,有最小值,最小值.
②存在.有两种情形:如图3-1中,当时,
∵,,
∴,
∴,
∵,
∴,
∴.
如图3-2中,当时,作于.
∵,
∴,
∵,
∴,
∴,
∵,
∴,
由,可得,
∴,
∴,
∴.
综上所述,满足条件的的值为或.
科目:初中数学 来源: 题型:
【题目】随着社会的快速发展,人们对生活质量的要求越来越高,净水器已经走入普通百姓家庭.某电器公司销售A、B两种型号的净水器,第一周售出A型号净水器4台,B型号净水器5台,收人20500元.第二周售出A型号净水器6台,B型号净水器10台,收人36000元.
(1)求A、B两种型号的净水器的销售单价;
(2)若该电器公司计划第三周销售这两种型号净水器20台,要使销售收入不低于45000元,则第三周至少要售出A种型号的净水器多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生参加户外活动的情况,某市教育行政部门对部分学生参加户外活动的时间进行了抽样调查,并将调查结果绘制成下列两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
(1)这次抽样共调查了 名学生,并补全条形统计图;
(2)计算扇形统计图中表示户外活动时间0.5小时的扇形圆心角度数;
(3)求出本次调查学生参加户外活动的平均时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图1,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,则AB,AD,DC之间的数量关系为_______.
(2)问题探究:如图2,在四边形ABCD中,AB∥DC,E是BC的中点,点F是DC的延长线上一点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的数量关系,并证明你的结论;
(3)问题解决:如图3,AB∥CD,点E在线段BC上,且BE:EC=3:4.点F在线段AE上,且∠EFD =∠EAB,直接写出AB,DF,CD之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(点F和点A重合)的边EF和矩形的边AB在同一直线上.现将Rt△PEF从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,
解答下列问题:
(1)如图1,连接PD,填空:∠PFD= ,四边形PEAD的面积是 ;
(2)如图2,当PF经过点D时,求 △PEF运动时间t的值;
(3)在运动的过程中,设△PEF与△ABD重叠部分面积为S,请求出S与t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.
(1)求证:四边形AECF是平行四边形;
(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中结论正确的个数是
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.
(探究证明)
(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;
(2)如图2,求证:∠OAB=∠OAE′.
(归纳猜想)
(3)图1、图2中的“叠弦角”的度数分别为 , ;
(4)图n中,“叠弦三角形” 等边三角形(填“是”或“不是”)
(5)图n中,“叠弦角”的度数为 (用含n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高 线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命 题会正确吗?
(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.
①等腰三角形两腰上的中线相等 ;
②等腰三角形两底角的角平分线相等 ;
③有两条角平分线相等的三角形是等腰三角形 ;
(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com