【题目】某班50名学生期末考试数学成绩(单位:分)的频率分布条形图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:
(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;
(2)成绩在79.5~89.5分段的人数占30%;
(3)成绩在79.5分以上的学生有20人;
(4)本次考试成绩的中位数落在69.5~79.5分段内.
其中正确的判断有( )
A. 4个 B. 3个 C. 2个 D. 1个
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=-x2+mx+n的图象经过A,C两点.
(1)求此抛物线的函数表达式;
(2)求证:∠BEF=∠AOE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(2+1)倍.若存在,请直接写出点P坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A、C重合,若其长BC为8,宽AB为4.
(1)求证:△AEF是等腰三角形.
(2)EF= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 中,∠BAC=9 0°,AB=3,AC=4,点 D 是 BC 的中点,将△ABD 沿 AD 翻折得到△AED,连 CE,则线段 CE 的长等于( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长方形OABC的边OA、OC分别在x轴、y轴上,B点坐标是(8,4),将△AOC沿对角线AC翻折得△ADC,AD与BC相交于点E.
(1)求证:△CDE≌△ABE
(2)求E点坐标;
(3)如图2,动点P从点A出发,沿着折线A→B→C→O运动(到点O停止),是否存在点P,使得△POA的面积等于△ACE的面积,若存在,直接写出点P坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MAN=120°,AC平分∠MAN.
(1)在图1中,若∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m及5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com