精英家教网 > 初中数学 > 题目详情

【题目】如图,AGF=∠ABC∠ 1+∠ 2=180°

1)试判断BFDE的位置关系,并说明理由;

2)若BFACCDE=30°,求AFG的度数.

【答案】1)BF∥DE,理由解析;(2)60°

【解析】

(1)先结合图形猜想DE∥BF,由平行线的判定可知只需证∠2+∠3=180°,根据平行线的性质结合已知条件即可求证;

2)根据补角的定义及已知∠ 1+ 2=180°,可求得∠1 =30°,再根据余角的定义即可求得答案.

1BFDE的位置关系是:BF∥DE.
理由:∵∠AGF=∠ABC,
∴BC∥GF(同位角相等,两直线平行),
∴∠1=∠3;
又∵∠1+∠2=180°,
∴∠2+∠3=180°,
∴BF∥DE;

(2)∵BF∥DE,BF⊥AC,
∴DE⊥AC,
∵∠CDE=30°,∠CDE +∠2=180°

∵∠1+∠2=180°,
∴∠1=∠CDE=30°,
∴∠AFG=90°-30°=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用配方法解下列方程,其中应在方程左右两边同时加上4的是(  )

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB90°,∠BOC30°OM平分∠AOCON平分∠BOC

1)求∠MON的度数;

2)如果∠AOBα,其他条件不变,求∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点

(1)求这个二次函数的解析式;

(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,GBC边上一点,BEAGE,DFAGF,连接DE.

(1)求证:△ABE≌△DAF;

(2)若AF=1,四边形ABED的面积为6,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形边上一点,,点点出发,以每秒个单位的速度沿着边向终点运动,连接,设点运动的时间为秒,则当的值为__________时,是以为腰的等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形中,.将三角形绕着点旋转,使得点落在直线上的点,点落在点

1)画出旋转后的三角形

2)求线段在旋转的过程中所扫过的面积(保留).

3)如果在三角形中,(其中).其他条件不变,请你用含有的代数式,直接写出线段旋转的过程中所扫过的面积(保留).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是正方形,GCD边上的一个动点(点GC、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.

(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;

②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.

(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.

(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离(米)与甲出发的时间(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙用16分钟追上甲;③乙走完全程用了30分钟;④乙到达终点时甲离终点还有360米.其中正确的结论有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步练习册答案