【题目】如图,等腰△ABC中,CA=CB=6,AB=6.点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAE与△CBF,连接EF,则△CEF面积的最小值为_____.
【答案】
【解析】
作CH⊥AB于H.首先证明△ECF是顶角为120°的等腰三角形,根据此线段最短可知CD的最小值为3,延长即可解决问题.
解:作CH⊥AB于H.
∵CA=CB,CH⊥AB,
∴AH=BH=3,
∴cos∠CAH==,
∴∠CAB=∠CBA=30°,
∴∠ACB=120°,CH=AC=3,
由翻折不变性可知:CD=CE=CF,∠ACE=∠ACD,∠BCD=∠BCF,
∴∠ECF=360°-120°-120°=120°,
∴△ECF是顶角为120°的等腰三角形,
∴当CE的长最短时,△ECF的面积最小,
根据垂线段最短可知,当CD与CH重合时,EC=CD=CH=3,
∴S△ECF=×3×=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】在 中,,点 为的中点.
(1)如图1,E为线段DC上任意一点,将线段绕点D逆时针旋转90°得到线段,连接 ,过点F作,交直线 于点 .判断 与的数量关系并加以证明;
(2)如图2,若为线段的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米
(1)设平均每天的工作量为x(单位:万米),用来表示运输公司完成任务所需的时间,并写出x的取值范围.
(2)由于工程进度的需要,实际平均每天运送土石方是原计划的1.2倍,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).
(1)该二次函数的关系式是 ,顶点坐标 .
(2)根据图象回答:当x满足 时,y>0;
(3)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.
(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);
(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究下面的问题:
(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.
(2)运用你所得到的公式计算:
①10.7×9.3
②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com