【题目】在平面直角坐标系中,点A的坐标是(4,0),点P在直线y=﹣x+m上,且AP=OP=4,则m的值为_____.
【答案】2+2或2﹣2.
【解析】
易知点P在线段OA的垂直平分线上,那么就能求得△AOP是等边三角形,就能求得点P的横坐标,根据勾股定理可求得点P的纵坐标.把这点代入一次函数解析式即可,同理可得到在第四象限的点.
由已知AP=OP,点P在线段OA的垂直平分线PM上.
∴OA=AP=OP=4,
∴△AOP是等边三角形.
如图,当m≥0时,点P在第一象限,OM=2,OP=4.
在Rt△OPM中,PM= ,
∴P(2,2).
∵点P在y=﹣x+m上,
∴m=2+2.
当m<0时,点P在第四象限,根据对称性,P′(2,﹣2).
∵点P′在y=﹣x+m上,
∴m=2﹣2.
则m的值为2+2或2﹣2.
故答案为:2+2或2﹣2.
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC中,CA=CB=6,AB=6.点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAE与△CBF,连接EF,则△CEF面积的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE
(1)证明OE∥AD;
(2)①当∠BAC= °时,四边形ODEB是正方形.
②当∠BAC= °时,AD=3DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,AB为⊙O 的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP上,且BC=PC.
(1)求证:直线BC是⊙O的切线;
(2)若OA=3,AB=2,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.
(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;
(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点)
(1)若∠CFE=119°,PG交∠FEB的平分线EG于点G,∠APG=150°,则∠G的大小为 .
(2)如图2,连接PF.将△EPF折叠,顶点E落在点Q处.
①若∠PEF=48°,点Q刚好落在其中的一条平行线上,请直接写出∠EFP的大小为 .
②若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+2nx﹣n2+n的顶点为P,直线y=分别交x,y轴于点M,N.
(1)若点P在直线MN上,求n的值;
(2)是否存在过(0,﹣2)的直线与抛物线交于A,B两点(A点在B点的下方),使AB为定长,若存在,求出AB的长;若不存在,请说明理由;
(3)在(2)的条件下,当四边形MABN的周长最小时,求n的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com