精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,AEQ沿EQ翻折形成FEQ,连接PF,PD,则PF+PD的最小值是____

【答案】8

【解析】

如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.

如图作点D关于BC的对称点D′,连接PD′,ED′,

RtEDD′中,∵DE=6,DD′=8,

ED′==10,

DP=PD′,

PD+PF=PD′+PF,

EF=EA=2是定值,

∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=8,

PF+PD的最小值为8,

故答案为:8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某地计划用120180天(含120180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米

1)设平均每天的工作量为x(单位:万米),用来表示运输公司完成任务所需的时间,并写出x的取值范围.

2)由于工程进度的需要,实际平均每天运送土石方是原计划的1.2倍,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究下面的问题:

(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(ab),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.

(2)运用你所得到的公式计算:

10.7×9.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为6P为对角线AC上一点,且CP=PEPBCD于点E,则PE=

A.B.C.D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,的直径,上一点,和过点的切线互相垂直,垂足为点

如图,求证:平分

如图,直线的延长线交于点的平分线交于点于点,求证:

的条件下,如图,若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.

(1)求一次函数与反比例函数的解析式;

(2)求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在中,的平分线,上一点,且,连接并延长,又过的垂线交,交,则下列说法:①的中点;②;③;④为等腰三角形;⑤连接,若,则四边形的面积为24;其中正确的是______(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A的坐标是(40),点P在直线y=﹣x+m上,且APOP4,则m的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,∠ACB=90°,AC=BC=4,DAB的中点,P是平面上的一点,且DP=1,连接BP,CP

(1)如图,当点P在线段BD上时,求CP的长;

(2)当△BPC是等腰三角形时,求CP的长;

(3)将点B绕点P顺时针旋转90°得到点B′,连接AB′,求AB′的最大值.

查看答案和解析>>

同步练习册答案