精英家教网 > 初中数学 > 题目详情
6.已知关于x的一元二次方程kx2+(2k-3)x+k-1=0有两个不相等的实数根,
(1)求k的取值范围;
(2)当k取最大整数时,求该方程的解.

分析 (1)由方程kx2+(2k-3)x+k-1=0有两个不相等的实数根,则有k≠0且△>0,然后求它们的公共部分即可;
(2)取得k的值后得到关于x的一元二次方程,通过解方程求得x的值即可.

解答 解:(1)依题意得:△=(2k-3)2-4k(k-1)=9-8k.
∵关于x的一元二次方程kx2+(2k-3)x+k-1=0有两个不相等的实数根,
∴9-8k>0且k≠0,
解得k<$\frac{9}{8}$且k≠0;

(2)由(1)知,k<$\frac{9}{8}$且k≠0.则k取最大整数为1,即k=1,所以该方程为:x2-x=0,
解得x1=0,x2=1.

点评 本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.
当△>0,方程有两个不相等的实数根;
当△=0,方程有两个相等的实数根;
当△<0,方程没有实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.求证:CD=2DM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.若∠BOC=62°,求∠DOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,∠1+∠2+∠3+∠4的值为360°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某同学星期天早晨在双湖公园的东西方向的主干道上跑步,他从A地出发每隔3分钟就记录下自己的跑步情况:-605,650,580,600,-550(向东记为正方向,单位:米).15分钟后他在B地停下来休息,试回答下列问题.
(1)B地在A地的什么方向?距A地多远?
(2)在跑步过程中,最远处距离A处多远?
(3)该同学在15分钟内一共跑了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.等边△ABC的边长为2,P是平面内任意一点,△PAB、△PBC、△PAC均为等腰三角形.
(1)请用尺规作图的方法作出所有满足条件的点P(不写做法,保留作图痕迹,用P1,P2,P3…表示);
(2)直接写出∠PAB的度数;
(3)在满足条件的所有点P中任取2点,则这两点距离的最小值是2-$\frac{2\sqrt{3}}{3}$,最大值是2+2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在Rt△ABC中,∠C=90°,AC=2,BC=1,则sinA=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x秒.
(1)当x为何值时,PQ∥BC;
(2)S△BCQ:S△ABC=1:3时,求S△BPQ:S△ABC的值;
(3)在现有条件下,哪些边对应成比例就能使△APQ与△CQB相似?并写出对应成比例的边.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知反比例函数y=$\frac{k}{x}$(k≠0)的图象过点A(-3,2).
(1)求这个反比例函数的解析式;
(2)若B(x1,y1),C(x2,y2),D(x3,y3)是这个反比例函数图象上的三个点,若x1>x2>0>x3,请比较y1,y2,y3的大小,并说明理由.

查看答案和解析>>

同步练习册答案