【题目】阅读下列材料解决问题:
材料:古希腊著名数学家 毕达哥拉斯发现把数1,3,6,10,15,21…这些数量的(石子),都可以排成三角形,则称像这样的数为三角形数.
把数 1,3,6,10,15,21…换一种方式排列,即
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15
…
从上面的排列方式看,把1,3,6,10,15,…叫做三角形数“名副其实”.
(1)设第一个三角形数为a1=1,第二个三角形数为a2=3,第三个三角形数为a3=6,请直接写出第n个三角形数为an的表达式(其中n为正整数).
(2)根据(1)的结论判断66是三角形数吗?若是请说出66是第几个三角形数?若不是请说明理由.
(3)根据(1)的结论判断所有三角形数的倒数之和T与2的大小关系并说明理由.
【答案】
(1)解:根据题意得:an= (n为正整数);
(2)解: 66是三角形数,理由如下:
当 =66时,解得:n=11或n=﹣12(舍去),
则66是第11个三角形数
(3)T= + + + +…+ = + + + +…+ =2(1﹣ + ﹣ + ﹣ +…+ ﹣ )= ,
∵n为正整数,∴0< <1,
则T<2
【解析】(1)列出部分an的值,根据an的变化找出规律an=,(n为正整数);(2)66是三角形数,理由如下,结合(1)结论得=66解关于n的方程,即可得出n的值,从而得出结论;(3)将分数变形成两个分数相减的形式,求出T的值再与2进行比较即可。
【考点精析】根据题目的已知条件,利用数与式的规律的相关知识可以得到问题的答案,需要掌握先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律.
科目:初中数学 来源: 题型:
【题目】如图,AD平分∠BAC,BD⊥AD,垂足为D,连接CD,若三角形△ABC内有一点P,则点P落在△ADC内(包括边界的阴影部分)的概率为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )
A. (44,5) B. (5,44) C. (44,6) D. (6,44)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(2,1),B(2,4).
(1)若直线l:y=x+b与AB有一个交点.
则b的取值范围为_______________;
(2)若直线l:y=kx与AB有一个交点.
则k的取值范围为_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,为坐标原点.直线交轴于点,交轴于点,,垂足为,交轴负半轴于点,且点坐标为.
(1)求直线的解析式;
(2)点为直线右侧第一象限内一点,连接、,将线段绕点顺时针旋转90°,得到线段,点落在点处,设点的坐标为,求点的坐标(用含的式子表示);
(3)在(2)的条件下,过点作垂直于轴于点,交于点,连接,点为延长线上一点,连接,交于点,连接,若,,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为100米的点P处.这时,一辆出租车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒,且∠APO=60°,∠BPO=45°.
(1)求A、B之间的路程;
(2)请判断此出租车是否超过了城南大道每小时60千米的限制速度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.
(1)求证:BD=CE;
(2)若BE、CD交于点F,求证:△BDF≌△CEF;
(3)在(2)的条件下连接AF,求证:AF平分∠BAC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣4mx(m≠0)与x轴交于A,B两点(点A在点B的左侧).
(1)求点A,B的坐标及抛物线的对称轴;
(2)过点B的直线l与y轴交于点C,且tan∠ACB=2,直接写出直线l的表达式;
(3)如果点P(x1 , n)和点Q(x2 , n)在函数y=mx2﹣4mx(m≠0)的图象上,PQ=2a且x1>x2 , 求x12+ax2﹣6a+2的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com