精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:

小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如32 (1)2.善于思考的小明进行了以下探索:

ab(mn)2(其中abmn均为正整数),则有abm22n22mn.

am22n2b2mn.这样小明就找到了一种把部分形如ab的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)abmn均为正整数时,若ab(mn)2,用含mn的式子分别表示ab,得a__________b__________

(2)利用所探索的结论,找一组正整数abmn填空:________________(________________)2

(3)a4(mn)2,且amn均为正整数,求a的值.

【答案】(1)m23n22mn(2) 4211(答案不唯一);(3) 13

【解析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;

(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;

(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.

解:(1)∵a+b=

∴a+b=m2+3n2+2mn

∴a=m2+3n2,b=2mn.

故答案为:m2+3n2,2mn.

(2)设m=1,n=1,

∴a=m2+3n2=4,b=2mn=2.

故答案为4、2、1、1.

(3)由题意,得:

a=m2+3n2,b=2mn

∵4=2mn,且m、n为正整数,

∴m=2,n=1或者m=1,n=2,

∴a=22+3×12=7,或a=12+3×22=13.

“点睛”本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某政府部门进行公务员招聘考试,其中三人中录取一人,他们的成绩如下:

测试成绩

题目

文化课知识

74

87

69

面试

58

74

70

平时表现

87

43

65

1)按照平均成绩甲、乙、丙谁应被录取?

2)若按照文化课知识、面试、平时表现的成绩已431的比例录取,甲、乙、丙谁应被录取?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】来自中国、美国、立陶宛、加拿大的四国青年男篮巅峰争霸赛于2014325-27日在我县体育馆举行。小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB、OB分别表示父、子俩送票、取票过程中,离体育馆的路程S(米)与所用时间t(分钟)之间的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):

(1)从图中可知,小明家离体育馆 米,父子俩在出发后 分钟相遇.

(2)求出父亲与小明相遇时距离体育馆还有多远?

(3)小明能否在比赛开始之前赶回体育馆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DAAB=12.

(1)求∠CDB的度数;

(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知为两条相互平行的直线之间一点,的角平分线相交于.

(1)求证:

(2)连结时,求的度数;

(3)时,将线段沿直线 方向平移,记平移后的线段为分别对应时,请直接写出的度数_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则经过6小时可到达乙地.

(1)甲、乙两地相距多少千米?

(2)如果汽车把速度提高到 v(千米/时),那么从甲地到乙地所用时间 t(小时)将怎样变化?

(3)写出 t v之间的函数关系式;

(4)因某种原因,这辆汽车需在5小时内从甲地到达乙地,则此时汽车的平均速度至少应是多少?

(5)已知汽车的平均速度最大可达80千米/时,那么它从甲地到乙地最快需要多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB6AD8,矩形内一动点P使得SPADS矩形ABCD,则点P到点AD的距离之和PA+PD的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理是一个基本的几何定理,早在我国西汉吋期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:34551213724258151794041等等都是勾股数.

1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如345中,522+123221251213中,1332+2253222;请证明:mn为正整数,且mn,若有一个直角三角形斜边长为m2+n2,有一条直角长为m2n2,则该直角三角形一定为“整数直角三角形”;

2)有一个直角三角形两直角边长分别为,斜边长4,且ab均为正整数,用含b的代数式表示a,并求出ab的值;

3)若c1a12+b12c2a22+b22,其中,a1a2b1b2均为正整数.证明:存在一个整数直角三角形,其斜边长为c1c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为________

查看答案和解析>>

同步练习册答案