【题目】据统计:从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民于某超市今年5月20日购买1千克猪肉花40元钱.
(1)问:那么今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克30元的猪肉,按5月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降2元,其日销售量就增加40千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?
【答案】(1)今年年初猪肉的价格为每千克25元; (2)应该每千克定价为37元.
【解析】
(1)设今年年初猪肉的价格为每千克x元,根据年初与5月20日猪肉单价间的关系,可得出关于x的一元一次方程,解之即可得出结论;
(2)设每千克降价y元,则日销售(100+)千克,根据总利润=每千克的利润×销售数量,即可得出关于y的一元二次方程,解之即可得出y值,再将其较大值代入(40-y)中即可求出结论
解:(1)设今年年初猪肉的价格为每千克x元,
依题意,得:(1+60%)x=40,
解得:x=25.
答:今年年初猪肉的价格为每千克25元.
(2)设每千克降价y元,则日销售(100+)千克,
依题意,得:(40-30-y)(100+)=1120,
解得:y1=2,y2=3,
∵尽可能让顾客优惠,
∴y=3,
∴40-y=37.
答:应该每千克定价为37元.
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)
(1)求出图象与x轴的交点A、B的坐标;
(2)在二次函数的图象上是否存在点P,使S△PAB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABE沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:
①若∠A=70°,则∠ABE=35°;②若点F是CD的中点,则S△ABES菱形ABCD
下列判断正确的是( )
A. ①,②都对B. ①,②都错C. ①对,②错D. ①错,②对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半圆O是一个量角器,△AOB为一纸片,点A在半圆上,边AB与半圆相交于点D,边OB与半圆相交于点C,若点C、D、A在量角器上对应读数分别为40°,70°,150°,则∠B的度数是( )
A. 20°B. 25°C. 30°D. 35°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①;②;③对于任意实数m,总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为
A. 1 个 B. 2 个 C. 3 个 D. 4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式;
(2)判断△ABC的形状,证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+4ax+c的最大值为4,且图象过点(﹣3,0).
(1)求二次函数解析式;
(2)若将该二次函数的图象绕着原点旋转180°,请直接写出旋转后图象的函数解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com