| A. | -13 | B. | 12 | C. | 14 | D. | 15 |
分析 根据一元二次方程解的定义得到2α2-5α-1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=$\frac{5}{2}$,αβ=-$\frac{1}{2}$,然后利用整体代入的方法计算.
解答 解:∵α为2x2-5x-1=0的实数根,
∴2α2-5α-1=0,即2α2=5α+1,
∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,
∵α、β为方程2x2-5x-1=0的两个实数根,
∴α+β=$\frac{5}{2}$,αβ=-$\frac{1}{2}$,
∴2α2+3αβ+5β=5×$\frac{5}{2}$+3×(-$\frac{1}{2}$)+1=12.
故选B.
点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.也考查了一元二次方程解的定义.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{75}{13}$ | B. | $\frac{96}{13}$ | C. | $\frac{120}{13}$ | D. | $\frac{144}{13}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (20$\sqrt{3}$-20)cm | B. | (40$\sqrt{3}$-40)cm | C. | (60-30$\sqrt{3}$)cm | D. | (60$\sqrt{3}$-60)cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com