精英家教网 > 初中数学 > 题目详情

【题目】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左、右两数之和,它给出了(a+bnn为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数121,恰好对应(a+b2a2+2ab+b2展开式中的系数;第四行的四个数1331,恰好对应着(a+b3a3+3a2b+3ab2+b2展开式中的系数等.

1)(a+bn展开式中项数共有   项.

2)写出(a+b5的展开式:(a+b5   

3)利用上面的规律计算:255×24+10×2310×22+5×21

【答案】1n+1;(2a5+5a4b+10a3b2+10a2b3+5ab4+b5;(31.

【解析】

1)根据规律,可知n+1项;

2)根据规律,可知(a+b5a5+5a4b+10a3b2+10a2b3+5ab4+b5

3)根据规律得出原式=(215

解:(1))(a+bn展开式中项数共有n+1项,

故答案为n+1

2)(a+b5a5+5a4b+10a3b2+10a2b3+5ab4+b5

故答案为a5+5a4b+10a3b2+10a2b3+5ab4+b5

3255×24+10×2310×22+5×21

25+5×24×(﹣1+10×23×(﹣12+10×22×(﹣13+5×2×(﹣14+(﹣15

=(215

1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】绵阳中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9 000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.

(1)求原计划拆、建面积各是多少平方米?

(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知三个顶点的坐标分别是.

(1)请在图中,画出绕着点逆时针旋转后得到的,的正切值为 .

(2)以点为位似中心,缩小为原来的,得到,请在图中轴左侧,画出,若点上的任意一点,则变换后的对应点的坐标是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=﹣x+4x轴,y轴分别相交于AB两点,把△AOB绕点A旋转90°后得到△AOB′,则点B′的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AEGC

(1)试猜想AEGC有怎样的关系(直接写出结论即可)

(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AECG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.

(3)(2)中,若EBC的中点,且BC2,则CF两点间的距离为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.

1)如图,△ABC中,ACABDE是△ABCBC边上的中分线段,FAC中点,过点BDE的垂线交AC于点G,垂足为H,设ACbABc

求证:DFEF

b6c4,求CG的长度;

2)若题(1)中,SBDHSEGH,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A0.5x1B1x1.5C1.5x2D2x2.5E2.5x3,制作成两幅不完整的统计图(如图).

请根据图中提供的信息,解答下列问题:

1)学生会随机调查了   名学生;

2)补全频数分布直方图;

3)若全校有900名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(CO的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66cos41.3°≈0.75tan41.3°≈0.88

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上.点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,1cm半径作⊙O.点P与点D同时出发,设它们的运动时间为t(单位:s) (0≤t≤).

(1)如图1,连接DQ,若DQ平分∠BDC,则t的值为   s;

(2)如图2,连接CM,设△CMQ的面积为S,求S关于t的函数关系式;

(3)在运动过程中,当t为何值时,⊙O与MN第一次相切?

查看答案和解析>>

同步练习册答案