【题目】在平面直角坐标系中,抛物线与y轴的交点为A,与x轴的正半轴分别交于点B(b,0),C(c,0).
(1)当b=1时,求抛物线相应的函数表达式;
(2)当b=1时,如图,E(t,0)是线段BC上的一动点,过点E作平行于y轴的直线l与抛物线的交点为P.求△APC面积的最大值;
(3)当c =b+ n.时,且n为正整数.线段BC(包括端点)上有且只有五个点的横坐标是整数,求b的值.
【答案】(1)y=﹣6x+5;(2)当t=时,面积S有最大值;(3)1或.
【解析】试题分析:(1)当b=1时,将点B(1,0)代入抛物线y=﹣6mx+5中求出m,即可解决问题.
(2)如图1中,直线AC与PE交于点F.切线直线AC的解析式,构建二次函数,利用二次函数的性质即可解决问题.
(3)分两种情形①当b整数时,n为整数,可知n=4,c=b+4.则b,b+4是方程x2﹣mx+5=0的两个根,分别代入方程中求解即可,②当b小数时,n为整数,∴n=5,c=b+5为小数,则b,b+5是方程﹣6x+5=0的两个根.
试题解析:(1)当b=1时,将点B(1,0)代入抛物线y=﹣6mx+5中,得m=1,
∴y=﹣6x+5;
(2)如图1中,直线AC与PE交于点F.
当b=1时,求得A(0,5),B(1,0),C(5,0),可得AC所在的一次函数表达式为y=﹣x+5,
∵E(t,0),
∴P (t,﹣6t+5),直线l与AC的交点为F(t,﹣t+5),
∴PF=(﹣t+5)﹣(﹣6t+5)=+5t,
∴==,
∵<0,
∴当t=时,面积S有最大值;
(3)①当b整数时,n为整数,
∴n=4,c=b+4.则b,b+4是方程﹣mx+5=0的两个根,分别代入方程中,
得﹣mb+5=0①,②,
由①②可得+4b﹣5=0,解得b=1或﹣5(舍);
或由一元二次方程根与系数的关系得 b(b+4)=5解得b=1或﹣5(舍).
②当b小数时,n为整数,∴n=5,c=b+5为小数,则b,b+5是方程﹣mx+5=0的两个根,同样可得b=或(舍弃);
∴b=1或.
科目:初中数学 来源: 题型:
【题目】如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.
(1)求y与x之间的函数关系式;
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足为F.
(1)若AC=10,求四边形ABCD的面积;
(2)求证:AC平分∠ECF;
(3)求证:CE=2AF .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知地球上海洋面积为316 000 000km2 , 数据316 000 000用科学记数法表示为( )
A.3.61×109
B.3.61×108
C.3.61×107
D.3.61×106
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com