【题目】解方程:(1) (2)x2-2x-4=0
(3)x2﹣4x+1=0(用配方法) (4)
【答案】(1)x1=2,x2=﹣1;(2)x1=1+,x2=1﹣;(3)x1=2+,x2=2﹣;(4)x1=3,x2=1
【解析】试题分析:(1)移项后开方,即可得出两个一元一次方程,求出方程的解即可;
(2)求出b2﹣4ac的值,再代入公式求出即可;
(3)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可;
(4)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
试题解析:(1)(2x﹣1)2﹣9=0,
(2x﹣1)2=9,
2x﹣1=±3,
x1=2,x2=﹣1;
(2)x2﹣2x﹣4=0
b2﹣4ac=(﹣2)2﹣4×1×(﹣4)=20,
x=,
x1=1+,x2=1﹣;
(3)x2﹣4x+1=0,
x2﹣4x=﹣1,
x2﹣4x+4=﹣1+4,
(x﹣2)2=3,
x﹣2=,
x1=2+,x2=2﹣;
(4)(x﹣3)2+2x(x﹣3)=0,
(x﹣3)(x﹣3+2x)=0,
x﹣3=0,x﹣3+2x=0,
x1=3,x2=1.
科目:初中数学 来源: 题型:
【题目】在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B的坐标为(﹣1,2).
(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1;
(2)画出与△A1B1C1关于y轴对称的△A2B2C2;
(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为 ;
(4)试在y轴上找一点Q(在图中标出来),使得点Q到B2、C2两点的距离之和最小,并求出QB2+QC2的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与y轴的交点为A,与x轴的正半轴分别交于点B(b,0),C(c,0).
(1)当b=1时,求抛物线相应的函数表达式;
(2)当b=1时,如图,E(t,0)是线段BC上的一动点,过点E作平行于y轴的直线l与抛物线的交点为P.求△APC面积的最大值;
(3)当c =b+ n.时,且n为正整数.线段BC(包括端点)上有且只有五个点的横坐标是整数,求b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在轴上,记为,折痕为CE.直线CE的关系式是,与轴相交于点F,且AE=3.
(1)求OC长度;
(2)求点的坐标;
(3)求矩形ABCO的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一条公路的转弯处是一段圆弧AB.
(1)作出弧AB所在圆的圆心O;(用直尺和圆规作图,保留作图痕迹,不写作法)
(2)若弧AB的中点C到弦AB的距离为20m,AB=80m,求弧AB所在圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面.
现有19张硬纸板,裁剪时x张用A方法,其余用B方法.
(1)设裁剪出的侧面个数为个,裁剪出底面的个数为个.分别求出、与x的关系式.
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com