精英家教网 > 初中数学 > 题目详情

【题目】在矩形中ABCDAB12P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对位点G,过点BBECG,垂足为E且在AD上,BEPC于点F

1)如图1,若点EAD的中点,求证:△AEB≌△DEC

2)如图2,①求证:BPBF;②当AD25,且AEDE时,求的值.

【答案】1)见解析;(2)①见解析;②

【解析】

1)先判断出再判断出,即可得出结论;

2)①利用折叠的性质,得出,进而判断出即可得出结论;

②判断出,得出比例式建立方程求解即可得出,再判断出,进而求出,即可得出结论;

解:(1)在矩形中,

中点

中,

2)①在矩形

沿折叠得到

②当

由折叠得,

中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应国家的一带一路经济发展战略,树立品牌意识,我市质检部门对ABCD四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.

1)抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为

2)抽查C厂家的合格零件为 件,并将图1补充完整;

3)通过计算说明合格率排在前两名的是哪两个厂家.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形ABCD中,BD是一条对角线,∠DBC=30°DBA=45°C=70°.DC=aAB=b, 请写出求tanADB的思路.不用写出计算结果

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰ABC中,AB=AC,将线段BA绕点B顺时针旋转到BD,使BDACH,连结AD并延长交BC的延长线于点P.

(1)依题意补全图形;

(2)若∠BAC=2α,求∠BDA的大小(用含α的式子表示);

(3)小明作了点D关于直线BC的对称点点E,从而用等式表示线段DPBC之间的数量关系.请你用小明的思路补全图形并证明线段DPBC之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1876年,美国总统Garfield用如图所示的两个全等的直角三角形证明了勾股定理,若图中,则下面结论错误的是( )

A. B. C. D. 是等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠ADB,作图.

步骤1:以点D为圆心,适当长为半径画弧,分别交DADB于点MN;再分别以点MN为圆心,大于MN长为半径画弧交于点E,画射线DE

步骤2:在DB上任取一点O,以点O为圆心,OD长为半径画半圆,分别交DADBDE于点PQC

步骤3:连结PQOC

则下列判断:②OC∥DA③DP=PQ④OC垂直平分PQ,其中正确的结论有(  )

A. ①③④ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,点E是边CD上一点,且BCECCFBEAB于点FPEB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BCFB;④PFPC.其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD纸片上有一点PPA1PD2PC3,现将△PCD剪下,并将它拼到如图所示位置(CA重合,PG重合,DD重合),则∠APD的度数为(  )

A.150°B.135°C.120°D.108°

查看答案和解析>>

同步练习册答案