【题目】科学研究发现,海平面大气压约是100千帕,它随海拔升高而降低,海拔3000米以下,每升高100米,气压下降约1千帕:3000﹣5000米每升高100米,气压下降约0.8千帕设山的海拔高度为x米,相应的大气压为y千帕.
(1)当0<x<3000时,求y与x之间的函数关系式;
(2)周末,小明和小伙伴登山(山峰海拔小于5000米)游玩,在山顶测得大气压为63.6千帕,则该山峰海拔约为多少米?
【答案】(1)当0<x<3000时, y=﹣0.01x+100;(2)该山峰海拔约为3800米.
【解析】
(1)由每升高100米,气压下降约1千帕列出函数关系式;(2)将x=3000代入解析式求值,确定63.6千帕对应的海拔高度在3000米以上,从而发求出海拔高度.
解:(1)由题意可得,
当0<x<3000时,y与x之间的函数关系式是:y=100﹣×1=﹣0.01x+100,
即当0<x<3000时,y与x之间的函数关系式是y=﹣0.01x+100;
(2)当x=3000时,y=﹣0.01×3000+100=70,
∵63.6<70,
∴该山峰海拔约为:×100+3000=3800(米),
即该山峰海拔约为3800米.
科目:初中数学 来源: 题型:
【题目】如图,和都是等腰直角三角形,,点P为射线BD,CE的交点.
求证:;
若,把绕点A旋转.
当时,求PB的长;
直接写出旋转过程中线段PB长的最大值与最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加丙组的人数为 ;
(2)该年级报名参加本次活动的总人数 ,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线“等边抛物线”.
(1)若对任意m,n,点M(m,n)和点N(-m+4,n)恒在“等边抛物线”:上,求抛物线的解析式;
(2)若抛物线:“等边抛物线”,求的值;
(3)对于“等边抛物线”:,当1<x<m吋,总存在实数b。使二次函数的图象在一次函数y=x图象的下方,求m的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有( )
①abc<0
②3a+c>0
③4a+2b+c<0
④2a+b=0
⑤b2>4ac
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0(2)9a>3bc;(3)9a+b+c=0:(4)若方程a(x+1)(x﹣5)=﹣2的两根为x1和x2,且x1<x2,则x1<1<5<x2,其中正确的结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xOy中,有AB为斜边的等腰直角三角形ABC,其中点A(0,2),点C(﹣1,0),抛物线y=ax2+ax﹣2经过B点.
(1)求B点的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否存在点N(点B除外),使得△ACN仍然是以AC为直角边的等腰直角三角形?若存在,求点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,点P在AD上,AB=2,AP=1.直角尺的直角顶点放在点P处,直角尺的两边分别交AB、BC于点E、F,连接EF(如图1).
(1)当点E与点B重合时,点F恰好与点C重合(如图2).
①求证:△APB∽△DCP;
②求PC、BC的长.
(2)探究:将直角尺从图2中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中(图1是该过程的某个时刻),观察、猜想并解答:
① tan∠PEF的值是否发生变化?请说明理由.
② 设AE=x,当△PBF是等腰三角形时,请直接写出x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com