精英家教网 > 初中数学 > 题目详情

【题目】科学研究发现,海平面大气压约是100千帕,它随海拔升高而降低,海拔3000米以下,每升高100米,气压下降约1千帕:30005000米每升高100米,气压下降约0.8千帕设山的海拔高度为x米,相应的大气压为y千帕.

1)当0x3000时,求yx之间的函数关系式;

2)周末,小明和小伙伴登山(山峰海拔小于5000米)游玩,在山顶测得大气压为63.6千帕,则该山峰海拔约为多少米?

【答案】1)当0x3000时, y=﹣0.01x+100;(2)该山峰海拔约为3800米.

【解析】

(1)由每升高100米,气压下降约1千帕列出函数关系式;(2)将x=3000代入解析式求值,确定63.6千帕对应的海拔高度在3000米以上,从而发求出海拔高度.

解:(1)由题意可得,

0x3000时,yx之间的函数关系式是:y100×1=﹣0.01x+100

即当0x3000时,yx之间的函数关系式是y=﹣0.01x+100

2)当x3000时,y=﹣0.01×3000+10070

63.670

∴该山峰海拔约为:×100+30003800(米),

即该山峰海拔约为3800米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,都是等腰直角三角形,,点P为射线BDCE的交点.

求证:

,把绕点A旋转.

时,求PB的长;

直接写出旋转过程中线段PB长的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:

(1)该年级报名参加丙组的人数为

(2)该年级报名参加本次活动的总人数 ,并补全频数分布直方图;

(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线“等边抛物线”.

(1)若对任意m,n,点M(m,n)和点N(-m+4,n)恒在“等边抛物线”上,求抛物线的解析式;

(2)若抛物线“等边抛物线”,求的值;

(3)对于“等边抛物线”,当1<x<m吋,总存在实数b。使二次函数的图象在一次函数y=x图象的下方,求m的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有(  )

①abc<0

②3a+c>0

③4a+2b+c<0

④2a+b=0

⑤b2>4ac

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+c(a≠0)的部分图象如图所示,图象过点(10),对称轴为直线x2,下列结论:(1)4a+b0(2)9a3bc(3)9a+b+c0(4)若方程a(x+1)(x5)=﹣2的两根为x1x2,且x1x2,则x115x2,其中正确的结论有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系xOy中,有AB为斜边的等腰直角三角形ABC,其中点A02),点C(﹣10),抛物线yax2+ax2经过B点.

1)求B点的坐标;

2)求抛物线的解析式;

3)在抛物线上是否存在点N(点B除外),使得△ACN仍然是以AC为直角边的等腰直角三角形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,点PAD上,AB=2AP=1.直角尺的直角顶点放在点P处,直角尺的两边分别交ABBC于点EF,连接EF(如图1).

(1)当点E与点B重合时,点F恰好与点C重合(如图2).

①求证:△APB∽△DCP

②求PCBC的长.

(2)探究:将直角尺从图2中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中(1是该过程的某个时刻),观察、猜想并解答:

tanPEF的值是否发生变化?请说明理由.

AE=x,当△PBF是等腰三角形时,请直接写出x的值.

查看答案和解析>>

同步练习册答案