精英家教网 > 初中数学 > 题目详情

【题目】下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )

A.4个 B.3个 C.2个 D.1个

【答案】A

【解析】

试题分析:根据旋转、轴对称的定义来分析.

图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称.

解:图形1可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;

图形2可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;

图形3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;

图形4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.

故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有4个.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正比例函数y=kx与反比例函数y= 的图象不可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCABBCAD=2BC=6CD=8EF分别是边ABCD的中点, DHBC于点H,连接EHECEF,现有下列结论:①∠CDH=30°EF=4;③四边形EFCH是菱形;SEFC=3SBEH.你认为结论正确的有___________.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有点a,b,c三点

(1)用“<”将a,b,c连接起来.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|x﹣a|+|x﹣b|的最小值为   

②|x﹣a|+|x﹣b|+|x+1|的最小值为   

③|x﹣a|+|x﹣b|+|x﹣c|的最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,点EAD边上,点FAD的延长线上,且BE=CF.

(1)求证:四边形EBCF是平行四边形.

(2)若BEC=90°,ABE=30°,AB=,求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,在等边ABC中,D是边AC上一点,连接BD,将BCD绕点B逆时针旋转60°,得到BAE,连接ED,若BC=5,BD=4.则下列结论错误的是( ).

A.AEBC B. ADE=BDC

C.BDE是等边三角形 D. ADE的周长是9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两块等腰直角三角形纸片AOBCOD按图所示放置,直角顶点重合在点O处,AB25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°α90°)角度,如图所示.

(1)在图中,求证:ACBD,且ACBD

(2)BDCD在同一直线上(如图③)时,若AC7,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,OE,OD分别平分∠AOC和∠BOC,

(1)如果∠AOB=90°,BOC=38°,求∠DOE的度数;

(2)如果∠AOB=α,BOC=β(α、β均为锐角,αβ),其他条件不变,求∠DOE;

(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以ECCF为邻边作平行四边形ECFG

(1)如图1,证明平行四边形ECFG为菱形;

(2)如图2,若∠ABC=90°,MEF的中点,求∠BDM的度数;

(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.

查看答案和解析>>

同步练习册答案