精英家教网 > 初中数学 > 题目详情

【题目】如图,数轴上有点a,b,c三点

(1)用“<”将a,b,c连接起来.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|x﹣a|+|x﹣b|的最小值为   

②|x﹣a|+|x﹣b|+|x+1|的最小值为   

③|x﹣a|+|x﹣b|+|x﹣c|的最小值为   

【答案】(1) bac;(2) <;(3)b;(4)①ba②b+1③b-c.

【解析】

(1)比较有理数的大小可以利用数轴,它们从左到右的顺序,即从小到大的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);

(2)先求出b-a的范围,再比较大小即可求解;

(3)先计算绝对值,再合并同类项即可求解;

(4)根据绝对值的性质以及题意即可求出答案.

1)根据数轴上的点得:b>a>c;

(2)由题意得:b-a<1;

(3)|c-b|-|c-a+1|+|a-1|

=b-c-(a-c-1)+a-1

=b-c-a+c+1+a-1

=b;

(4)①当xab之间时,|x-a|+|x-b|有最小值,

|x-a|+|x-b|的最小值为:x-a+b-x=b-a;

②当x=a时,

|x-a|+|x-b|+|x+1|=0+b-x+x-(-1)=b+1为最小值;

③当x=a时,

|x-a|+|x-b|+|x-c|=0+b-a+a-c=b-c为最小值.

故答案为:<;b-a;b+1;b-c.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为一斜坡,其坡角为19.5°,紧挨着斜坡AB底部A处有一高楼,一数学活动小组量得斜坡长AB=15m,在坡顶B处测得楼顶D处的仰角为45°,其中测量员小刚的身高BC=1.7米,求楼高AD.
(参考数据:sin19.5°≈ ,tan19.5°≈ ,最终结果精确到0.1m).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线C1:y=a(x+1)(x﹣3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3)
(1)求抛物线C1的解析式及A,B点坐标;
(2)求抛物线C1的顶点坐标;
(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2 , 若抛物线C2的顶点在△ABC内,求n的取值范围. (在所给坐标系中画出草图C1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a,b,c为非零的实数,则的可能值的个数为(  )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.

(1)观察猜想

如图1,当点D在线段BC上时,

①BC与CF的位置关系为:   

②BC,CD,CF之间的数量关系为:   ;(将结论直接写在横线上)

(2)数学思考

如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣B;②∠A﹣90°;A+∠B)A﹣B)其中表示∠B余角的式子有_____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )

A.4个 B.3个 C.2个 D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1 , y2 , 0的大小关系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD和四边形DEFG都是正方形,点E,G分别在AD,CD上,连接AF,BF,CF.

(1)求证:AF=CF;

(2)若∠BAF=35°,求∠BFC的度数.

查看答案和解析>>

同步练习册答案