精英家教网 > 初中数学 > 题目详情
如图,△ABC与△DCE都是等边三角形,B,C,E三点在同一条直线上,若AB=3,∠BAD=150°,则DE的长为(  )
A、3B、4C、5D、6
考点:含30度角的直角三角形,等边三角形的性质
专题:
分析:根据等边三角形的性质得出AB=AC=3,DE=DC,∠BAC=∠DCE=∠ACB=60°,求出∠ACD=60°,∠CAD=90°,求出∠ADC=30°,根据很30度角的直角三角形性质得出DC=2AC,求出即可.
解答:解:∵△ABC与△DCE都是等边三角形,AB=3,∠BAD=150°,
∴AB=AC=3,DE=DC,∠BAC=∠DCE=∠ACB=60°,
∴∠ACD=60°,∠CAD=150°-60°=90°,
∴∠ADC=30°,
∴DC=2AC=6,
∴DE=DC=6,
故选D.
点评:本题考查了等边三角形的性质和含30度角的直角三角形性质,三角形内角和定理的应用,解此题的关键是得出DC=2AC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

多项式4a2b+3ab2-2b3+a3按a的降幂排列是
 
,按b的升幂排列第三项是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

一套仪器由一个A部件和三个B部件构成.用1m3钢材可做40个A部件或240个B部件.现要用6m3钢材制作这种仪器,应用多少钢材做A部件?多少钢材做B部件?恰好配成这种仪器多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

算一算:
(一) 解方程:
(1)x2-4x-5=0(用因式分解法解)    (2)x2-4
3
x+10=0 (用公式法解)
(二)先化简,再求值:
x2-x
x+1
÷(x-1-
2x-2
x+1
)
,其中x=
2
+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图已知:在△ABC中,AB=AC,点D在BC边上,且BD=CD,求证:AD平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=-x+2与x轴交于点A,与y轴交于点B,一抛物线经过A、B两点,且其对称轴为直线x=2.求:
(1)这条抛物线的表达式;
(2)这条抛物线的顶点坐标;
(3)以A、B两点及原点为顶点的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

x2+7x-3=0(用配方法解方程)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的是三个顶点都在⊙O上,AB=AC,∠BAC=120°,BD为⊙O直径,且AD=6,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知A=2x2+6x-2,B=3x2+5x-4,求:
(1)2A-3B;
(2)3A-(2B-A).

查看答案和解析>>

同步练习册答案