精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,点E为AD的中点,连接EC,过点E作EF⊥EC,交AB于点F,则tan∠ECF=

【答案】
【解析】解:∵四边形ABCD是正方形, ∴AD=DC,∠A=∠D=90°,
∵AE=ED,
∴CD=AD=2AE,
∵∠FEC=90°,
∴∠AEF+∠DEC=90°,
∵∠DEC+∠DCE=90°,
∴∠AEF=∠DCE,∵∠A=∠D,
∴△AEF∽△DCE,
= =
∴tan∠ECF= =
所以答案是

【考点精析】通过灵活运用正方形的性质和锐角三角函数的定义,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC三边长a=b=6,c=12.

(1)如图1,以点A为原点,AB所在直线为x轴建立平面直角坐标系,直接出点B,C的坐标.

(2)如图2,过点C作MCN=45°交AB于点M,N,请证明AM2+BN2=MN2

(3)如图3,当点M,N分布在点B异侧时,则(3)中的结论还成立吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(
A.3
B.4﹣
C.4
D.6﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中C组所在的扇形的圆心角为36° 被抽取的体育测试成绩频数分布表

组别

成绩

频数

A

20<x≤24

2

B

24<x≤28

3

C

28<x≤32

5

D

32<x≤36

b

E

36<x≤40

20

合计

a

根据上面的图表提供的信息,回答下列问题:

(1)计算频数分布表中a与b的值;
(2)根据C组28<x≤32的组中值30,估计C组中所有数据的和为
(3)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:

(1)在刚出发时,我公安快艇距走私船多少海里?

(2)计算走私船与公安艇的速度分别是多少?

(3)求出l1,l2的解析式.

(4)问6分钟时,走私船与我公安快艇相距多少海里?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,以点A为圆心,AB长为半径画弧,交CD于点E,连接AE、BE.作BF⊥AE于点F.
(1)求证:BF=AD;
(2)若EC= ﹣1,∠FEB=67.5°,求扇形ABE的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm

伞架

DE

DF

AE

AF

AB

AC

长度

36

36

36

36

86

86


(1)求AM的长.
(2)当∠BAC=104°时,求AD的长(精确到1cm). 备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程或方程组解应用题:

某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.

查看答案和解析>>

同步练习册答案