精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCDBNDN分别平分∠ABM,∠MDC,试问∠M与∠N之间的数量关系如何?请说明理由.

【答案】∠N=∠M

【解析】

过点M作直线ME∥AB,过点N作直线NF∥AB,由平行线的性质可得∠BMD=ABM+∠CDM,∠BND=∠ABN+∠CDN,再根据角平分线的性质,即可得到∠BMD和∠BND的关系.

解:∠BMD=2∠BND.理由如下:

过点M作直线ME∥AB,过点N作直线NF∥AB,

又∵AB∥CD,

∴ME∥CD,NF∥CD(平行于同一直线的两直线互相平行),

∴∠ABM=∠BME,∠CDM=∠DME(两直线平行,内错角相等),

∴∠BMD=∠BME+∠DME=∠ABM+∠CDM.

同理可得:∠BND=∠ABN+∠CDN.

∵BN,DN分别平分∠ABM,∠MDC,

∴∠ABM=2∠ABN,∠CDM=2∠CDN(角平分线定义)

∴∠BMD=2∠BND.即∠N=∠M

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图, ABCD交于点O OECD OFAB  BOD=25° 则∠AOE=______ DOF=______,∠AOC=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学初一年级有350名同学去春游,已知2A型车和1B型车可以载学生100人;1A型车和2B型车可以载学生110人.(1AB型车每辆可分别载学生多少人?(2)若租一辆A型车需要1000元,一辆B型车需1200元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加工销售三种销售方式,这三种销售方式每吨荸荠的利润如下表:

销售方式 批发 零售 加工销售

利润(百元/吨) 12 22 30

设按计划全部售出后的总利润为y百元,其中批发量为x吨,且加工销售量为15吨.

1)求yx之间的函数关系式;

2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论: ①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CDAB=CD,点EFBC上,且BE=CF

1)求证:△ABE≌△DCF

2)试证明:以AFDE为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正确的是(

A.①④
B.②④
C.①②③
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论: ①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3
其中正确的有(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某地方政府决定在相距50kmA、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DAABA,CBABB,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

查看答案和解析>>

同步练习册答案