【题目】如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是( )
A.70B.74C.144D.148
【答案】B
【解析】
过A作AM⊥直线b于M,过D作DN⊥直线c于N,求出∠AMD=∠DNC=90°,AD=DC,∠1=∠3,根据AAS推出△AMD≌△CND,根据全等得出AM=CN,求出AM=CN=5,DN=7,在Rt△DNC中,由勾股定理求出DC2即可.
解:如图:
过A作AM⊥直线b于M,过D作DN⊥直线c于N,
则∠AMD=∠DNC=90°,
∵直线b∥直线c,DN⊥直线c,
∴∠2+∠3=90°,
∵四边形ABCD是正方形,
∴AD=DC,∠1+∠2=90°,
∴∠1=∠3,
在△AMD和△CND中
∴△AMD≌△CND,
∴AM=CN,
∵a与b之间的距离是5,b与c之间的距离是7,
∴AM=CN=5,DN=7,
在Rt△DNC中,由勾股定理得:DC2=DN2+CN2=72+52=74,
即正方形ABCD的面积为74,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,D、B、C三点在同一条直线上,∠C=50°,∠FBC=80°.问:∠DBF的平分线BE与AC有怎样的位置关系?并说明理由.
解:BE与AC一定平行.
∵D、B、C三点在同一条直线上,
∴∠DBF+∠FBC=180°( ).
又∵∠FBC=80°(已知).
∴∠DBF= .
又∵BE平分∠DBF(已知).
∴( ).
又∵∠C=50°(已知),
∴∠ =∠ ( ),
∴ ∥ .( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场经销一种商品,已知其每件进价为40元。现在每件售价为70元,每星期可卖出500件。该商场通过市场调查发现:若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出m(m为正整数)件。设调查价格后每星期的销售利润为W元。
(1)设该商品每件涨价x(x为正整数)元,
①若x=5,则每星期可卖出____件,每星期的销售利润为_____元;
②当x为何值时,W最大,W的最大值是多少。
(2)设该商品每件降价y(y为正整数)元,
①写出W与Y的函数关系式,并通过计算判断:当m=10时每星期销售利润能否达到(1)中W的最大值;
②若使y=10时,每星期的销售利润W最大,直接写出W的最大值为_____。
(3)若每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,求m的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.
(1)求证:CE=EF;
(2)连接AF并延长,交⊙O于点G.填空:
①当∠D的度数为 时,四边形ECFG为菱形;
②当∠D的度数为 时,四边形ECOG为正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有20筐白菜,以每筐25千克为标准,超过或不足的分别用正、负数来表示.记录如下(单位:千克):
与标准质量的差 | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐数 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)这些白菜中,最重的一筐比最轻的一筐重多少千克?
(2)与标准重量比较,20筐白菜总计为超过或不足多少千克?
(3))若白菜每千克售价2.6元,则这20筐白菜可卖多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形ABCD沿着对角线BD折叠,使点C落在处,交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若,,求△BDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=25,BC=,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,若按图中规律继续下去,则∠1+∠2+…+∠n等于( )
A. n·180° B. 2n·180° C. (n-1)·180° D. (n-1)2·180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.如图 1,在平面直角坐标系中,A 、B 在坐标轴上,其中 A(0, a) ,B(b, 0)满足| a 3 | 0.
(1)求 A 、 B 两点的坐标;
(2)将 AB 平移到CD , A 点对应点C(2, m) , DE 交 y 轴于 E ,若ABC 的面积等于13,求点 E 的坐标;
(3)如图 2,若将 AB 平移到CD ,点 C、D 也在坐标轴上,F 为线段 AB 上一动点,(不包括点 A ,点B) ,连接OF 、FP 平分BFO ,BCP 2PCD,试探究COF,OFP ,CPF 的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com