精英家教网 > 初中数学 > 题目详情
7.如图,四边形ABCD中,∠A=∠ABC=90°,AD=10cm,AF=30cm,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若BF⊥CD,求四边形BDFC的面积.

分析 1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;
(2)由勾股定理列式求出AB,由平行四边形的面积公式列式计算即可得解.

解答 (1)证明:∵∠A=∠ABC=90°,
∴BC∥AD,
∴∠CBE=∠DFE,
∵E是边CD的中点,
∴CE=DE,
在△BEC与△FED中,
$\left\{\begin{array}{l}{∠CBE=∠DFE}&{\;}\\{∠BEC=∠FED}&{\;}\\{CE=DE}&{\;}\end{array}\right.$,
∴△BEC≌△FED(AAS),
∴BE=FE,
又∵E是边CD的中点,
∴CE=DE,
∴四边形BDFC是平行四边形;

(2)解:∵BF⊥CD,CE=DE,
∴BD=BC=AF-AD=20cm,
由勾股定理得,AB=$\sqrt{B{D}^{2}-A{D}^{2}}$=$\sqrt{2{0}^{2}-1{0}^{2}}$=10$\sqrt{3}$(cm),
∴四边形BDFC的面积=20×10$\sqrt{3}$=200$\sqrt{3}$(cm2).

点评 本题考查了平行四边形的判定,等腰三角形的性质,全等三角形的判定与性质,勾股定理;熟练掌握平行四边形的判定,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.计算:$(\sqrt{5}+1)(\sqrt{5}-1)-{(-\frac{1}{3})^{-2}}+|{1-\sqrt{2}}|-{(π-3)^0}+\sqrt{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,菱形OABC顶点O是坐标原点,顶点B(0,6),OA=5.
(1)请直接写出A、C两点坐标;
(2)若将菱形沿x轴平移,使其有两个顶点恰好同时落在反比例函数y=$\frac{k}{x}$图象的某一支上;试猜想是哪两个顶点,并求该反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向平移5个单位,得到长方形AnBnCnDn(n>2),若ABn的长度为2016,则n的值为(  )
A.400B.401C.402D.403

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.实数a、b在数轴上对应点的位置如图所示:则3a-$\sqrt{(a-b)^{2}}$=4a-b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,E、F、G、H分别是?ABCD各边的中点.
求证:阴影四边形AMCN是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在平行四边形ABCD中,∠A:∠B:∠C=2:1:2,则∠D=(  )
A.60°B.72°C.108°D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.在方程组$\left\{\begin{array}{l}{2x-y=1}\\{y=3z+1}\end{array}\right.$、$\left\{\begin{array}{l}{x=2}\\{3y-x=1}\end{array}\right.$、$\left\{\begin{array}{l}{x+y=0}\\{3x-y=5}\end{array}\right.$、$\left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=1}\\{x+y=1}\end{array}\right.$中,是二元一次方程组的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在菱形ABCD中,AE⊥BC于E,AF⊥CD于F,且E、F分别是BC、CD的中点,则∠AEF=60°.

查看答案和解析>>

同步练习册答案