精英家教网 > 初中数学 > 题目详情
16.在方程组$\left\{\begin{array}{l}{2x-y=1}\\{y=3z+1}\end{array}\right.$、$\left\{\begin{array}{l}{x=2}\\{3y-x=1}\end{array}\right.$、$\left\{\begin{array}{l}{x+y=0}\\{3x-y=5}\end{array}\right.$、$\left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=1}\\{x+y=1}\end{array}\right.$中,是二元一次方程组的有(  )
A.1个B.2个C.3个D.4个

分析 依据方程组的定义进行判断即可.

解答 解:方程组$\left\{\begin{array}{l}{2x-y=1}\\{y=3z+1}\end{array}\right.$中含所有三个未知数,不是二元一次方程组;
方程组$\left\{\begin{array}{l}{x=2}\\{3y-x=1}\end{array}\right.$是二元一次方程组;
方程组$\left\{\begin{array}{l}{x+y=0}\\{3x-y=5}\end{array}\right.$是二元一次方程组;
方程组$\left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=1}\\{x+y=1}\end{array}\right.$中,分母中含所有未知数,不是二元一次方程组.
故选:B.

点评 本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:
①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,
从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有多少组可能?请写出所有可能的组合;并选择其中一组加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,四边形ABCD中,∠A=∠ABC=90°,AD=10cm,AF=30cm,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若BF⊥CD,求四边形BDFC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,?ABCD 中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F.
(1)求证:四边形EBFD是平行四边形;
(2)小明在完成(1)的证明后继续进行了探索.连接AF、CE,分别交BE、FD于点G、H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图2)中补全他的证明思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)如果点E是AB的中点,AC=4,EC=2.5,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若(x2+px+8)•(x2-3x+1)的结果中不含x3项,则P=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.牡丹作为中国十女名花之一,自古就受国人所欢迎,小寒和姐姐就想自己养壮丹,他们初步从花色上选择了白色的“夜光白”,红色的“火炼金丹”.粉色的“赵粉”,黄色的“姚黄”这四个品种,由于每天打理牡丹需要时间,父母只允许养一盆壮丹,但到底养哪个品种的牡丹,小寒和姐姐意见不统一,在这种情况下,父母建议小寒和姐姐用摸球游戏来决定.游戏规则知下:在一个不透明的袋子中装有白、红、黄球各一个,这四个球除颜色不同外,其余完全相同,小寒先从袋中随机摸出一球,记下颜色,并将球放回袋中,搅匀,然后组姐再从袋中随机摸出一球,若两人所摸出球的颜色相同,则养该球色所对应的牡丹品种,否则,前面的记录作废,按上面规则重新摸球,直到两人所摸出球的颜色相同为止.
(1)小寒和姐姐随机各摸一次球,至少摸出一个黄球的概率是多少?
(2)已知小寒喜欢白色或红色的牡丹,小寒和姐姐随机各摸一次球,摸出球均是白色或均是红色的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,已知△ABC是等腰直角三角形,∠ACB=90°,过BC的中点D作DE⊥AB于E,连结CE,求sin∠ACE=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知DE平分∠ADB,∠2=∠C,求证:DE∥BC.

查看答案和解析>>

同步练习册答案