【题目】如图,在Rt△ABC中,∠ACB=90°,△DCE是△ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.
(1)旋转角的大小;
(2)若AB=10,AC=8,求BE的长.
科目:初中数学 来源: 题型:
【题目】如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC交∠ACB的外角∠ACE的平分线于F.
(1)求证:CF∥AB;
(2)若∠DAC=40°,求∠DFC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一家商店准备进行装修,若请甲、乙两个装修队同时施工,8天完成,需付两队共3520元费用;若先请甲队单独做6天,再请乙队单独做12天可以完成,需付两队共3480元费用。
(1)甲、乙两队工作一天,商场各应付多少元?
(2)单独请哪个队装修,商场所付费用最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂计划在规定时间内生产24000个零件.由于销售商突然急需供货,工厂实际工作效率比原计划提高了50%,并提前5天完成这批零件的生产任务.求该工厂原计划每天加工这种零件多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.
(1)在方程①,②,③中,写出是不等式组的相伴方程的序号 .
(2)写出不等式组的一个相伴方程,使得它的根是整数: .
(3)若方程都是关于的不等式组的相伴方程,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究题:已知:如图,,.求证:.
老师要求学生在完成这道教材上的题目证明后,尝试对图形进行变形,继续做拓展探究,看看有什么新发现?
(1)小颖首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小颖用到的平行线性质可能是 .
(2)接下来,小颖用《几何画板》对图形进行了变式,她先画了两条平行线,然后在平行线间画了一点,连接后,用鼠标拖动点,分别得到了图,小颖发现图正是上面题目的原型,于是她由上题的结论猜想到图和图中的与之间也可能存在着某种数量关系.于是她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.
请你在小颖操作探究的基础上,继续完成下面的问题:
(ⅰ)猜想图中与之间的数量关系并加以证明;
(ⅱ)补全图,直接写出与之间的数量关系: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出下列四个关于是否成反比例的命题,判断它们的真假.
(1)面积一定的等腰三角形的底边长和底边上的高成反比例;
(2)面积一定的菱形的两条对角线长成反比例;
(3)面积一定的矩形的两条对角线长成反比例;
(4)面积一定的直角三角形的两直角边长成比例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com