分析 (1)根据等腰直角三角形的性质可得AB=AC,AE=AD,再根据等量关系可得线段BE与线段CD的关系;
(2)根据等腰直角三角形的性质可得AB=AC,AE=AD,根据旋转的性质可得∠BAE=∠CAD,根据SAS可证△BAE≌△CAD,根据全等三角形的性质即可求解;
(3)根据平行四边形的性质可得∠ABC=∠ADC=45°,再根据等腰直角三角形的性质即可求解.
解答 解:(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,
∴AB=AC,AE=AD,
∴AE-AB=AD-AC,
∴BE=CD;
(2)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,
∴AB=AC,AE=AD,
由旋转的性质得,∠BAE=∠CAD,
在△BAE与△CAD中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAD}\\{AE=AD}\end{array}\right.$,
∴△BAE≌△CAD(SAS)
∴BE=CD;
(3)如图,
∵以A、B、C、D四点为顶点的四边形是平行四边形,△ABC和△AED都是等腰直角三角形,
∴∠ABC=∠ADC=45°,
∵ED=2AC,
∴AC=CD,
∴∠CAD=45°
或360°-90°-45°=225°,或360°-45°=315°
∴角α的度数是45°或225°或315°.
故答案为:BE=CD.
点评 此题是四边形综合题,涉及的知识点有:等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,解(2)的关键是判断出△BAE≌△CAD,解(3)的关键是画出示意图;综合性较强,难度中等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ①③ | C. | ①④ | D. | ①③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com