【题目】如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D.已知OA=OB=6 cm,AB=6cm.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
【答案】(1)3 cm;(2).
【解析】试题分析:(1)线段AB与⊙O相切于点C,则可以连接OC,得到OC⊥AB,则OC是等腰三角形OAB底边上的高线,根据三线合一定理,得到AC=3,在直角△OAC中根据勾股定理得到半径OC的长;
(2)图中阴影部分的面积等于△OAB的面积与扇形OCD的面积的差的一半.
(1)连接OC,则OC⊥AB.
∵OA=OB,
∴AC=BC=AB=
×6
=3
.
在Rt△AOC中,OC==
,
∴⊙O的半径为3.
(2)∵OC=OB,
∴∠B=30°,∠COD=60°
∴扇形OCD的面积为S扇形OCD=,
∴阴影部分的面积为S阴影=SRt△OBC-S扇形OCD=OCCB-
=
-
.
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于( )
A. 10B. C. 8D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,BE⊥AD于点E,BF⊥CD于点F,若∠EBF=60°,且AE=2,DF=1,则EC的长为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.
下列结论正确的是 (写出所有正确结论的序号)
①△CPD∽△DPA;
②若∠A=30°,则PC=BC;
③若∠CPA=30°,则PB=OB;
④无论点P在AB延长线上的位置如何变化,∠CDP为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,,求PD的长;
(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l//AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABDC的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BC A′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为3或7.其中正确的是( )
A. ①②③④B. ①③④C. ①②④D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分6分)一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.
(1)从袋中随机摸出1个球,摸出红球的概率为 ;
(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球,球两次摸到的球颜色不相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长为1,△ABC的顶点均在格点上. 请在所给直角坐标系中按要求画图和解答下列问题:
(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△A1B1C1,若△ABC内有一点P(m,n),则经过上述变换后点P的坐标为___ __.
(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2
(3) 若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,-2),则旋转中心坐标为___ _.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com