精英家教网 > 初中数学 > 题目详情

【题目】将点A先向下平移3个单位,再向右平移2个单位后得B(﹣25),则A点坐标为(  )

A.(﹣411B.(﹣26C.(﹣48D.(﹣68

【答案】C

【解析】

让点B先向上平移3个单位,再向左平移2个单位即可得到点A的坐标,让点B的横坐标减2,纵坐标加3即可得到点A的坐标.

解:∵将点A先向下平移3个单位,再向右平移2个单位后得B(﹣25),

∴点A的横坐标为﹣22=﹣4,纵坐标为5+38

A点坐标为(﹣48).

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将一张长方形纸片分别沿着EP,FP对折,使B落在B′,C落在C′.

(1)若点P,B′,C′在同一直线上(1),求两条折痕的夹角∠EPF的度数;

(2)若点P,B′,C′不在同一直线上(2),且∠B′PC′=10°,求∠EPF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1中所示程序进行计算:(1)若输入-3,求y的值;(2)若第一次输入x,输出的结果记为y1,第二次输入(1x),计算的结果记为y2,要使y1y2,你怎样选择x的值,并把x值的范围在图2中的数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠A=100°,∠C=70°,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B的度数为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+ x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(﹣3,0),M(0,﹣1).已知AM=BC.

(1)求二次函数的解析式;
(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;
(3)在(2)的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N.
①若直线l⊥BD,如图1,试求 的值;
②若l为满足条件的任意直线.如图2.①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,GCD上一点,延长BCE,使CE=CG,连接BG并延长交DEF.

(1)求证:△BCG≌△DCE;

(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.

(1)如图,当点P在线段AB上运动,且n=90°时

①若PD∥BC,PE∥AC,则m=_____

②若m=50°,求x+y的值.

(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情景:

如图1,AB//CD,PAB=130°,PCD=120°,求∠APC的度数.

小明的思路是:

过点PPE//AB,

∴∠PAB+APE=180°.

∵∠PAB=130°,∴∠APE=50°

AB//CD,PE//AB,PE//CD,

∴∠PCD+CPE=180°.

∵∠PCD=120°,∴∠CPE=60°

∴∠APC=APE+CPE=110°.

问题迁移:

如果ABCD平行关系不变,动点P在直线AB、CD所夹区域内部运动时,∠PAB,PCD的度数会跟着发生变化.

(1)如图3,当动点P运动到直线AC右侧时,请写出∠PAB,PCD和∠APC之间的数量关系?并说明理由.

(2)如图4,AQ,CQ分别平分∠PAB,PCD,那么∠AQC和角∠APC有怎择的数量关系?

(3)如图5,点P在直线AC的左侧时,AQ,CQ仍然平分∠PAB,PCD,请直接写出AQC和角∠APC的数量关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列语句中,命题有_______个.

①对顶角相等;②内错角相等;③∠1>∠2吗?④若a∥b,bc,则ac;⑤两点确定一条直线.

查看答案和解析>>

同步练习册答案