【题目】问题情景:
如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:
过点P作PE//AB,
∴∠PAB+∠APE=180°.
∵∠PAB=130°,∴∠APE=50°
∵AB//CD,PE//AB,∴PE//CD,
∴∠PCD+∠CPE=180°.
∵∠PCD=120°,∴∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
问题迁移:
如果AB与CD平行关系不变,动点P在直线AB、CD所夹区域内部运动时,∠PAB,∠PCD的度数会跟着发生变化.
(1)如图3,当动点P运动到直线AC右侧时,请写出∠PAB,∠PCD和∠APC之间的数量关系?并说明理由.
(2)如图4,AQ,CQ分别平分∠PAB,∠PCD,那么∠AQC和角∠APC有怎择的数量关系?
(3)如图5,点P在直线AC的左侧时,AQ,CQ仍然平分∠PAB,∠PCD,请直接写出∠AQC和角∠APC的数量关系 .
【答案】(1) ∠PAB+∠PCD=∠APC.(2)∠AQC=∠APC;(3) 2∠AQC+∠APC=360°.
【解析】分析:(1)过点P作PF∥AB,由平行线的传递性得到PF∥CD,再由两直线平行,内错角相等即可得出结论;
(2)由(1)的结论得到∠PAB+∠PCD=∠APC, ∠QAB+∠QCD=∠AQC,再由角平分线的性质即可得到结论;
(3)由(1)得:∠BAQ+∠CDQ=∠AQC.再由角平分线的性质得到∠PAQ+∠PCQ=∠AQC,根据四边形内角和为360°即可得到结论.
详解:(1)∠PAB+∠PCD=∠APC.
理由:如图3,过点P作PF∥AB,∴∠PAB=∠APF.
∵AB∥CD,PF∥AB,∴PF∥CD,
∴∠PCD=∠CPF,∴∠PAB+∠PCD=∠APF+∠CPF=∠APC,
即∠PAB+∠PCD=∠APC.
(2).
理由:如图4.
∵AQ,CQ分别平分∠PAB,∠PCD,
∴∠QAB=∠PAB,∠QCD=∠PCD,
∴∠QAB+∠QCD=∠PAB+∠PCD=(∠PAB+∠PCD),
由(1),可得∠PAB+∠PCD=∠APC,
∠QAB+∠QCD=∠AQC
∴∠AQC=∠APC.
(3)2∠AQC+∠APC=360°.理由如下:
由(1)得:∠BA Q+∠CDQ=∠AQC.
∵AQ平分∠PAB,CQ平分∠PCD,∴∠PAQ=∠BAQ,∠PCQ=∠DCQ,∴∠PAQ+∠PCQ=∠AQC.
∵∠PAQ+∠PCQ+∠AQC+∠APC=360°,∴∠APC+2∠AQC=360°.
科目:初中数学 来源: 题型:
【题目】将点A先向下平移3个单位,再向右平移2个单位后得B(﹣2,5),则A点坐标为( )
A.(﹣4,11)B.(﹣2,6)C.(﹣4,8)D.(﹣6,8)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数 (m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求m的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1 , y1),M2(x2 , y2)两点,试探究 是否为定值,并写出探究过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是ABCD的边CD的中点,延长AE交BC的延长线于点F.
(1)求证:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.
(1)若点F与B重合,求CE的长;
(2)若点F在线段AB上,且AF=CE,求CE的长;
(3)设CE=x,BF=y,写出y关于x的函数关系式(直接写出结果可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com