精英家教网 > 初中数学 > 题目详情

【题目】随着经济的快速发展,环境问题越来越受到人们的关注.为了了解垃圾分类知识的普及情况,某校随机调查了部分学生,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成下面两幅不完整的统计图:

1)本次被调查的学生有 名,扇形统计图中,

2)将条形统计图剩余的部分补充完整(包括朱标记的数据)

3)估计该校名学生中“非常了解”与“了解”的人数和是多少.

4)某环保小队有3名男生,1名女生,从中随机抽取2人在全校做垃圾分类知识交流,求恰好抽到一男一女的概率.

【答案】1;(2)见解析;(3952;(4)树状图见解析,

【解析】

1)先由了解的人数及其所占百分比求出总人数,再根据各项目的百分比之和为1求出不了解对应的百分比,用360°乘以不了解对应的百分比可得答案;
2)用总人数分别乘以非常了解、了解较少、不了解对应的百分比求出其人数,据此可补全图形;
3)用总人数乘以两者百分比之和即可得;
4)画树状图展示所有12种等可能的结果数,找出抽到一男一女的结果数,然后根据概率公式求解.

1)本次被调查的学生有36÷24%=150(名),
不了解对应的百分比为1-24%+10%+36%=30%
∴扇形统计图中,∠α=360°×30%=108°
故答案为:150108°

2)非常了解的人数为150×10%=15(名),
了解较少的人数为150×36%=54(名),
不了解的人数为150×30%=45(名),

补全图形如下:

估计该校名学生中非常了解了解的人数和是();

可以画树状图为:

共有种等可能的结果,其中抽到女的结果数为

所以恰好抽到一男一女的概率为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)的图象如图所示,在下列五个结论中:

2ab0;②abc0;③a+b+c0;④ab+c0;⑤4a+2b+c0

错误的个数有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b的图象与反比例函数的图象交于CD两点,与xy轴交于BA两点,且tanABO=OB=4OE=2

1)求一次函数的解析式和反比例函数的解析式;

2)求OCD的面积;

3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是边长为的正方形,矩形AEFG中AE=4,∠AFE=30°。将矩形AEFG绕点A顺时针旋转15°得到矩形AMNH(如图2),此时BD与MN相交于点O.

(1)求∠DOM的度数;

(2)图2中,求D、N两点间的距离;

(3)若将矩形AMNH绕点A再顺时针旋转15°得到矩形APQR,此时点B在矩形APQR的内部、外部还是边上?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在探究锐角三角函数的意义的学习过程中,小亮发现:“如图1,在中,,可探究得到

1)请你利用图1探究说明小亮的说法是否正确;

2)小丽猜想“如果在钝角三角形中,两个锐角正弦值与它们所对边的边长之间也有一定的关系“在图2的钝角中,是钝角,请你利用图2帮小丽探究之间的关系,并写出探究过程.

3)在锐角中,之间存在什么关系,请你探究并直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如图所示,下列结论:①,②,③,④,其中正确结论的个数为(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本

1当销售单价为70元时,每天的销售利润是多少?

2求出每天的销售利润y与销售单价x之间的函数关系式,并求出自变量的取值范围

3如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?每天的总成本=每件的成本×每天的销售量

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别是正方形的边的中点,以为边作正方形 交于点,联结

1)求证:

2)设,求证

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=﹣x+2的图象,绕x轴上一点Pm0)旋转180°,所得的图象经过(0.﹣1),则m的值为(  )

A.2B.1C.1D.2

查看答案和解析>>

同步练习册答案