精英家教网 > 初中数学 > 题目详情
4.解不等式组:$\left\{\begin{array}{l}{-3x≥2}\\{x-3>1}\end{array}\right.$.

分析 首先计算出两个不等式的解集,再根据大大小小找不到可得不等式组的解集.

解答 解:$\left\{\begin{array}{l}{-3x≥2①}\\{x-3>1②}\end{array}\right.$,
由①得:x≤-$\frac{2}{3}$,
由②得:x>4,
不等式组的解集为:无解.

点评 此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第5个图形中火柴棒根数是(  )
A.45B.46C.47D.48

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.探究发现

探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
如图甲,∠FDC、∠ECD为△ADC的两个外角,则∠A与∠FDC+∠ECD的数量关系∠FDC+∠ECD=180°+∠A.
探究二:如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;
(1)如图①,α+β>180°,则∠F=∠F=$\frac{1}{2}$(α+β)-90°;(用α,β表示)
(2)如图②,α+β<180°,请在图中画出∠F,且∠F=∠F=90°-$\frac{1}{2}$(α+β);(用α,β表示)
(3)一定存在∠F吗?如有,直接写出∠F的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知一次函数y=$\frac{3}{4}$x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示.
(1)填空:AB=5,BC=5$\sqrt{2}$.
(2)将△ABC绕点B逆时针旋转,
①当AC与x轴平行时,则点A的坐标是(0,-2)或(0,8)
②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.
③在②的条件下,旋转过程中AC扫过的图形的面积是多少?
(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在△ABC中,∠ACB=120°,AC=4,BC=6,过点A作BC的垂线,交BC的延长线于点D,则tanB的值为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若关于x的不等式组$\left\{\begin{array}{l}{2x≥2}\\{\frac{a+2x}{3}>x}\end{array}\right.$无解,则a的取值范围是(  )
A.a<1B.a≤1C.a>1D.a≥1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解不等式组$\left\{\begin{array}{l}{2x+17≥11-x}\\{6-3(1-x)>5x}\end{array}\right.$并求出所有整数解的和.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.有四张不透明的卡片,正面分别写有数字-1,-2,3,4,除正面的数字不同外,其余完全相同.将这4张卡片背面朝上洗匀后,先从中随机抽取一张,记这张卡片上的数字为k,再从余下的三张卡片中随机抽取一张,记其上面的数字为b.则使得一次函数y=kx+b的图象与两坐标轴围成的三角形面积不大于2的概率为$\frac{7}{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.△ABC与△DEF在网格中的位置如图所示,如果每个小正方形的边长都是1.
(1)求$\frac{AB}{DE}$、$\frac{BC}{EF}$、$\frac{AC}{DF}$的值;
(2)求△ABC的周长与△DEF的周长的比;
(3)在AB、BC、AC、DE、EF、DF这六条线段中,指出其中三组成比例的线段.

查看答案和解析>>

同步练习册答案