精英家教网 > 初中数学 > 题目详情
3.如图,AB∥CD,AB=CD,点E、F在AD上,且AE=DF.
求证:△ABE≌△DCF.

分析 根据平行线的性质求出∠A=∠D,根据SAS推出即可.

解答 证明:∵AB∥CD,
∴∠A=∠D,
在△ABE和△DCF中
$\left\{\begin{array}{l}{AB=DC}\\{∠A=∠D}\\{AE=DF}\end{array}\right.$
∴△ABE≌△DCF(SAS).

点评 本题考查了全等三角形的判定,平行线的性质的应用,能正确运用全等三角形的判定定理进行推理是解此题的关键,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.在平面直角坐标系中,A点为直线y=x上的一点,过A点作AB⊥x轴于点B,OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长最小值为6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.第六次全国人口普查数据显示,天津市宝坻区常住人口均为79.9万人,79.9万用科学记数法表示正确的是(  )
A.79.9×108B.7.99×108C.7.99×105D.0.799×106

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列运算正确的是(  )
A.a3+a2=a5B.3a2-a2=22C.a3•a2=a5D.a6÷a3=a2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知点A(2,-3)在双曲线$y=\frac{k}{x}$上,则k=-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图①,直线y=-$\frac{1}{2}$x+2交x轴、y轴于点A、B,C为直线AB上第二象限内一点,且S△COA=8,双曲线y=$\frac{k}{x}$经过C.
(1)求k的值;
(2)Q为双曲线上的一动点,联结OQ,过C作CM⊥OQ,CN⊥y轴于N,联结MN,如图②,当Q运动时,$\frac{MC+MO}{MN}$的值是否有变化?若不变,求其值,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.方程$\sqrt{1-x}$=3的解是x=-8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.方程$\sqrt{3-2x}$=x的根是1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是(  )
A.1B.3C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案