精英家教网 > 初中数学 > 题目详情

【题目】如图1,直角梯形ABCD中,ADBC,∠ADC=90°AD=8BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点NNPAD于点P,连接ACNP于点Q,连接MQ.设运动时间为t秒.

1AM= AP= .(用含t的代数式表示)

2)当四边形ANCP为平行四边形时,求t的值

3)如图2,将AQM沿AD翻折,得AKM,是否存在某时刻t

①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由

②使四边形AQMK为正方形,求 AC的长.

【答案】(1)8﹣2t,2+t;(2)t=2;(3)

【解析】

1)由DM=2t,根据AM=AD-DM即可求出AM=8-2t;先证明四边形CNPD为矩形,得出DP=CN=6-t,则AP=AD-DP=2+t
2)根据四边形ANCP为平行四边形时,可得6-t=8-6-t),解方程即可;
3))①由NPADQP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6-t-2t=8-6-t),求解即可,
②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.

解:(1)如图1

∵四边形CNPD为矩形 DP=CN=BCBN=6t

AP=ADDP=8﹣(6t=2+t

故答案为:82t2+t

2)∵四边形ANCP为平行四边形时,CN=AP

6t=8﹣(6t),解得t=2

3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:

NPADQP=PK

∴当PM=PA时有四边形AQMK为菱形

6t2t=8﹣(6t),解得t=1

②要使四边形AQMK为正方形.

∵∠ADC=90°,∴∠CAD=45°

∴四边形AQMK为正方形,则CD=AD

AD=8,CD=8,

AC.故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=的图象如图,点A0位于坐标原点,点A1A2A3…Any轴的正半轴上,点B1B2B3…Bn在二次函数位于第一象限的图象上,点C1C2C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3四边形An1BnAnCn都是菱形,A0B1A1=A1B2A1=A2B3A3…=An1BnAn

=60°,菱形An1BnAnCn的周长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.

(1)求m的取值范围;

(2)写出一个满足条件的m的值,并求此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+ca≠0)图象的一部分,抛物线的顶点坐标A13),与x轴的一个交点B40),直线y2=mx+nm≠0)与抛物线交于AB两点,下列结论:

①2a+b=0②abc0方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(﹣10);1x4时,有y2y1

其中正确的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x22x+3的图象与x轴交于A.B两点(A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求点A. B.C的坐标;

(2)判断以点ACD为顶点的三角形的形状,并说明理由;

(3)M(m0)为线段AB上一点(M不与点A.B重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQAB交抛物线于点Q,过点QQNx轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围ABBC两边),设AB xm,花园面积S.

1)求S关于x的函数关系式,求x的取值范围;

2)若在P处有一棵树与墙CDAD的距离分别是15m6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.

(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?

(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.

(1)求出抛物线C1的解析式,并写出点G的坐标;

(2)如图2,将抛物线C1向下平移k(k0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当A′B′G′是等边三角形时,求k的值:

(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.

查看答案和解析>>

同步练习册答案