精英家教网 > 初中数学 > 题目详情
17.下列各数:0.458,3.$\stackrel{••}{14}$,-$\frac{π}{3}$,$\sqrt{0.4}$,$-\root{3}{0.001}$,$\sqrt{36}$中无理数有(  )
A.1个B.2个C.3个D.4个

分析 无理数就是无限不循环小数,依据定义即可作出判断.

解答 解:无理数有:-$\frac{π}{3}$,$\sqrt{0.4}$共有2个.
故选B.

点评 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,$\sqrt{6}$,0.8080080008…(每两个8之间依次多1个0)等形式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.解方程(组):
(1)$\frac{x+1}{2}=\frac{2-x}{3}-1$
(2)解二元一次方程组$\left\{\begin{array}{l}{x-y=8①}\\{3x+y=12②}\end{array}\right.$
(一)有位同学是这么做的,①+②得4x=20,解得x=5,代入①得y=-3.
∴这个方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=-3}\end{array}\right.$.
该同学解这个二元一次方程组的过程中使用了加减消元法,目的是把二元一次方程组转化为一元一次方程求解;
(二)请你换一种方法来求解该二元一次方程组.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时点P的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.剪纸是我国最古老的民间艺术之一,被列入第四批人类非物质遗传代表作名录,下列剪纸作品中,既是中心对称图形又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)$\sqrt{0.04}+\root{3}{-64}-\sqrt{\frac{1}{4}}$
(2)|1-$\sqrt{2}$|+|$\sqrt{2}-\sqrt{3}$|+|$\sqrt{3}-2$|

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.数据显示,2015年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为(  )
A.5.166×107B.5.166×108C.51.66×106D.0.5166×108

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=$\frac{{k}_{2}}{x}$的图象在第一象限交于点A(3,1),连接OA.
(1)求反比例函数y=$\frac{{k}_{2}}{x}$的解析式;
(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,矩形ABCD中,AB=2,BC=1,O是AB的中点,动点P从B点开始沿着边BC,CD运动到点D结束.设BP=x,OP=y,则y关于x的函数图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解不等式$\frac{1}{2}(x+1)≤\frac{2}{3}x-1$,并把它的解集表示在数轴上,再写出它的最小整数解.

查看答案和解析>>

同步练习册答案