精英家教网 > 初中数学 > 题目详情
12.计算:
(1)$\sqrt{0.04}+\root{3}{-64}-\sqrt{\frac{1}{4}}$
(2)|1-$\sqrt{2}$|+|$\sqrt{2}-\sqrt{3}$|+|$\sqrt{3}-2$|

分析 (1)原式利用算术平方根,立方根定义计算即可得到结果;
(2)原式利用绝对值的代数意义化简,计算即可得到结果.

解答 解:(1)原式=0.2-4-$\frac{1}{2}$=-4.3;
(2)原式=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+2-$\sqrt{3}$=1.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.在正方形ABCD中,点P是射线CB上一个动点,连接PA,PD,点M、N分别为BC、AP的中点,连接MN交PD于点Q.
(1)如图1,当点P与点B重合时,△QPM的形状是等腰直角三角形;
(2)当点P在线段CB的延长线上时,如图2.
①依题意补全图2;
②判断△QPM的形状并加以证明;
(3)点P′于点P关于直线AB对称,且点P′在线段BC上,连接AP′,若点Q恰好在直线AP′上,正方形ABCD的边长为2,请写出求此时BP长的思路(可以不写出计算结果).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,正方形OABC的面积为4,反比例函数$y=\frac{k}{x}$(x>0)的图象经过点B.
(1)求点B的坐标和k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形AMC′B、CBA′N.设线段MC′、NA′分别与函数$y=\frac{k}{x}$(x>0)的图象交于点E、F,求直线EF的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.我们知道,在反比例函数y=$\frac{2}{x}$的图象上任取一点,过该点分别向两条坐标轴画垂线,这两条垂线与坐标轴围成的矩形面积始终是2.如果在某个函数的图象上任取一点,按同样的方式得到的矩形的周长始终是2,这个函数是y=-x+1(0<x<1).(写出一个满足条件的函数表达式及自变量的取值范围)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.小强统计了他家3月份打电话的次数及通话时间,这些数据均不超过20分钟,并列出了频数分布表:
通话时长(x分钟)0<x≤44<x≤88<x≤1212<x≤1616<x≤20
频数(通话次数)281461610
(1)小强家3月份一共打了多少次电话?
(2)求通话时间不超过12分钟的频数和频率?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列各数:0.458,3.$\stackrel{••}{14}$,-$\frac{π}{3}$,$\sqrt{0.4}$,$-\root{3}{0.001}$,$\sqrt{36}$中无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示
选手
方差0.0300.0190.1210.022
则这四人中发挥最稳定的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在菱形ABCD中,∠B=60°,点E、F分别在边AB、AD上,且AE=DF.
(1)试判断△ECF的形状并说明理由;
(2)若AB=6,那么△ECF的周长是否存在最小值?如果存在,请求出来;如果不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出一张,抽出的卡片正面图案既是中心对称图形,又是轴对称图形的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案