精英家教网 > 初中数学 > 题目详情
已知ABCD中,∠A+∠C=200°,则∠B的度数是
A.100°B.160°C.80°D.60°
C

试题分析:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC。

∵∠A+∠C=200°,∴∠A=100°。
∴∠B=180°﹣∠A=80°。故选C。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线。
根据    ,易证△AFG≌    ,得EF=BE+DF。
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系    时,仍有EF=BE+DF。
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为【   】
A.14B.15C.16D.17

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对角线互相   的平行四边形是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:

(1)楼高多少米?
(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2013年四川攀枝花4分)如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
其中正确结论的为   (请将所有正确的序号都填上).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川广安6分)如图,在平行四边形ABCD中,AE∥CF,求证:△ABE≌△CDF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD是等腰梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,已知EF :FC =" 1" :4.

(1)求ED :BC的值;
(2)若AD=8,求AE的长.

查看答案和解析>>

同步练习册答案