【题目】如图,是某小区入口抽象成的平面示意图,已知入口BC宽4米,栏杆支点O与地面BC的距离为0.8米,当栏杆OM升起到与门卫室外墙AB的夹角成30°时,一辆宽2.4米,高1.6米的轿车能否从该入口的正中间位置进入该小区?若能,请通过计算说明;若不能,请说明理由.(参考数据:1.7)
【答案】轿车能安全通过,理由见解析.
【解析】
直接在BC上取点Q,使BQ=0.8m,过Q作QP⊥BC交MO于点P,过O作OM⊥OQ于点M,分别得出PM,PQ的长进而得出答案.
解:轿车能安全通过.
理由:如图所示:当轿车从该入口的正中间位置进入该小区时,
车与OB的距离为:4.0÷2﹣2.4÷2=0.8(m),
在BC上取点Q,使BQ=0.8m,过Q作QP⊥BC交MO于点P,
过O作OM⊥OQ于点M,
则MQ=OB=0.8m,OM=BQ=0.8m,
在Rt△OPM中,
∵tan60°=,
∴PM=OMtan60°=0.8×=1.36(m),
∴PQ=PM+MQ=2.16m>1.6m,
∴轿车能安全通过.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,下列结论:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac<3ab.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:
(1)请将图2的统计图补充完整;
(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;
(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一台实物投影仪,图2是它的示意图,折线O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′∥OM,AD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点为双曲线上的一点,连接并延长与双曲线在第三象限交于点,为轴正半轴上一点,连接并延长与双曲线交于点,连接、,已知的面积为6,则点的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点 D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为___________ 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知方格纸中的每个小方格都是相同的正方形(边长为1),方格纸上有一个角∠AOB,A,O,B均为格点,请回答问题并只用无刻度直尺和铅笔,完成下列作图并简要说明画法:
(1)OA=_____;
(2)作出∠AOB的平分线并在其上标出一个点Q,使OQ=.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com