【题目】如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=62°,则∠AEB=_________.
【答案】152°.
【解析】
先求出∠ACE=∠BCD,再利用“边角边”证明△ACE和△BCD全等,根据全等三角形对应角相等可得∠CAE=∠CBD,从而求出∠CAE+∠CBE=∠EBD,再利用三角形的内角和等于180°列式求出∠EAB+∠EBA,然后再次利用三角形的内角和等于180°列式计算即可得解.
解:∵∠ACB=∠ECD=90°,
∴∠ACB∠BCE=∠ECD∠BCE,即∠ACE=∠BCD,
在△ACE和△BCD中,,
∴△ACE≌△BCD,
∴∠CAE=∠CBD,
∴∠CAE+∠CBE=∠CBD+∠CBE=∠EBD=62°,
在△ABC中,∠EAB+∠EBA=180°(∠ACB+∠CAE+∠CBE)=180°(90°+62°)=28°,
在△ABE中,∠AEB=180°(∠EAB+∠EBA)=180°28°=152°,
故答案为:152°.
科目:初中数学 来源: 题型:
【题目】如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,则α取值范围是( )
A. 36°45° B. 45°54° C. 54°72° D. 72°90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数的图象与轴正半轴交于点.
求证:该二次函数的图象与轴必有两个交点;
设该二次函数的图象与轴的两个交点中右侧的交点为点,若,将直线向下平移个单位得到直线,求直线的解析式;
在的条件下,设为二次函数图象上的一个动点,当时,点关于轴的对称点都在直线的下方,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名大学生竞选班长,现对甲、乙两名应聘者从笔试、口试、得票三个方面表现进行评分,各项成绩如表所示:
应聘者 | 笔试 | 口试 | 得票 |
甲 | 85 | 83 | 90 |
乙 | 80 | 85 | 92 |
(1)如果按笔试占总成绩20%、口试占30%、得票占50%来计算各人的成绩,试判断谁会竞选上?
(2)如果将笔试、口试和得票按2:1:2来计算各人的成绩,那么又是谁会竞选上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;
(3)当t何值时△COM≌△AOB,并求此时M点的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】广州火车南站广场计划在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取点A,过点A作AH⊥x轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P、O、Q为顶点,且以点Q为直角顶点的三角形与△AOH全等,则符合条件的点A的坐标是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中(每个小正方形的边长都为1个单位),在平面直角坐标系内,△ABC的三个顶点分别为(2,-4),B(4,-4),C(1,-1).
(1)请在图中标出△ABC的外接圆的圆心P的位置,并填写: 圆心P的坐标:P( , )
(2)画出△ABC绕点O逆时针旋转90°后的 ;
(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,且CF⊥AD于H,下列判断,①BG是△ABD中边AD上的中线;②AD既是△ABC中∠BAC的角平分线,也是△ABE中∠BAE的角平分线;③CH既是△ACD中AD边上的高线,也是△ACH中AH边上的高线,其中正确的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com