精英家教网 > 初中数学 > 题目详情

【题目】在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购买元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券元.

(1)求每转动一次转盘所获购物券金额的平均数;

(2)如果你在该商场消费元,你会选择转转盘还是直接获得购物券?说明理由.

【答案】(1)11.875元;(2)选择转转盘.

【解析】

游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.

解:(元);

元,

∴选择转转盘.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线经过点A0),B0),且与y轴相交于点C

1求这条抛物线的表达式

2)求∠ACB的度数;

3设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.

(1)求证:无论k为何值,方程总有两个不相等实数根;

(2)若原方程的一根大于3,另一根小于3,求k的最大整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,∠A36°,分别以AB为圆心,大于AB的长为半径作弧,两弧相交于MN两点,作直线MN分别交ABAC于点FD,作DEBCE.有下面三个结论:①BD平分∠ABC;DEDF;BC+CD2AF;其中,正确的结论的个数是(  )

A.3B.2C.1D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,AB=BC,以BC为直径的OAC相交于点D,过点DDEABCB延长线于点E,垂足为点F

1)判断DEO的位置关系,并说明理由;

2)若O的半径R=5tanC=,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,DAB上的点,过点DBC于点F,交AC的延长线于点E,连接CD,则下列结论正确的有( )

DCB=B;②CD=AB;③ADC是等边三角形;④若E=30°,则DE=EF+CF

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径作⊙O,分别交ACBC于点DE,点FAC的延长线上,且∠A2CBF

(1)求证:BF与⊙O相切.

(2)BCCF4,求BF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.

(1)求抛物线的解析式,并直接写出点D的坐标;

(2)当△AMN的周长最小时,求t的值;

(3)如图②,过点MMEx轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.

查看答案和解析>>

同步练习册答案