【题目】关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.
(1)求证:无论k为何值,方程总有两个不相等实数根;
(2)若原方程的一根大于3,另一根小于3,求k的最大整数值.
科目:初中数学 来源: 题型:
【题目】如图,直角三角板放在平面直角坐标系中,直角边垂直轴,垂足为,已知,点,,均在反比例函数的图象上,分别作轴于,轴于,延长,交于点,且点为的中点.
求点的坐标;
求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于点E,F是AB的中点,联结AE、EF,且AE⊥BE.
求证:(1)四边形BCEF是菱形;
(2).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚准备用一段长 44 米的篱笆围成三角形,用于养鸡。已知一条边长 x 米,第二条边是第一条边的 3 倍多 6 米。
(1)若能围成一个等腰三角形,求三边长
(2)若第一边长最短,写出 x 的取值范围 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请参照下面探究过程,完成所提出的问题.
(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点.
若∠A=30°,则∠BOC= ;
若∠A=α,则∠BOC= (用含α的代数式表示)
(2)如图2,在四边形ABDC中,点O是∠ABD和∠ACD外角平分线的交点,写出∠A、∠D与∠O之间的数量关系,并说明理由;
(3) 如图3,在四边形ABDC中,∠ABD和∠ACD外角的n等分线交于O,使∠ABD=n∠ABO,∠ACE=n∠ACO.直接写出∠A、∠D和∠O之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=5cm,点P从点C出发沿线段CA以每秒2cm的速度运动,同时点Q从点B出发沿线段BC以每秒1cm的速度运动.设运动时间为t秒(0<t<5).
(1)填空:AB= cm;
(2)t为何值时,△PCQ与△ACB相似;
(3)如图2,以PQ为斜边在异于点C的一侧作Rt△PEQ,且,连结CE,求CE.(用t的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购买元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券元.
(1)求每转动一次转盘所获购物券金额的平均数;
(2)如果你在该商场消费元,你会选择转转盘还是直接获得购物券?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的三个顶点的位置如图所示
(1)请画出△ABC关于y轴对称的△A′B′C′;(其中A′、B′、C′分别是A、B、C的对应点,不写画法)
(2)直接写出A′B′C′三点的坐标;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若∠F=30°,EB=6,求图中阴影部分的面积(结果保留根号和π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com