精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是平行四边形,用直尺和圆规作∠BAD的平分线AGBC于点E,若BF6AB5,则∠AEB的正切值为(  )

A. B. C. D.

【答案】A

【解析】

BFAGH,如图,由作法得AFAB,由于AG平分∠BAD,根据等腰三角形的性质得到AEBFBHFHBF3,再利用平行四边形的性质证明∠2=∠3,接着证明BEBA5,然后利用勾股定理计算出EH后根据正切的定义求解.

BFAGH,如图,

由作法得AFAB

AG平分∠BAD

∴∠1=∠2

AEBFBHFHBF3

∵四边形ABCD是平行四边形,

ADBC

∴∠2=∠3

∴∠1=∠3

BEBA5

RtBEH中,HE

tan3

即∠AEB的正切值为

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,点DE分别在ACAB上,BD平分∠ABCDEAB于点EAE=6cosA=.

(1)CD的长;

(2)tanDBC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:

t

0

1

2

3

4

5

6

7

h

0

8

14

18

20

20

18

14

下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,B=90°,AC=60,AB=30。点D是AC上的动点,过D作DFBC于F,再过F作FE//AC,交AB于E。设CD=x,DF=y.

(1)求y与x的函数关系式;

(2)当四边形AEFD为菱形时,求x的值;

(3)当FED是直角三角形时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF是正方形ABCD对角线AC上的两点,且,连接BEDEBFDF

求证:四边形BEDF是菱形:

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2mx﹣(m+1)与x轴负半轴交于点Ax10),与x轴正半轴交于点Bx20)(OAOB),与y轴交于点C,且满足x12+x22x1x213

1)求抛物线的解析式;

2)以点B为直角顶点,BC为直角边作RtBCDCD交抛物线于第四象限的点E,若ECED,求点E的坐标;

3)在抛物线上是否存在点Q,使得SACQ2SAOC?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】美丽的甬江宛如一条玉带穿城而过,数学课外实践活动中,小林在甬江岸边的A, B两点处,利用测角仪分别对西岸的一观景亭D进行测量.如图,测得∠DAC=45°,DBC=65°,若AB=114米,求观景亭D到甬江岸边AC的距离约为多少米?

(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知是等腰直角三角形,,点DBC的中点作正方形DEFG,使点AC分别在DGDE上,连接AEBG

试猜想线段BGAE的数量关系是______

将正方形DEFG绕点D逆时针方向旋转

判断中的结论是否仍然成立?请利用图2证明你的结论;

,当AE取最大值时,求AF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.

(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;

(2)求矩形菜园ABCD面积的最大值.

查看答案和解析>>

同步练习册答案