【题目】二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).
(1)求此二次函数的表达式;
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标;
(3)如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标.
【答案】(1)抛物线的解析式为y=﹣x2+3x+4;(2)点N的坐标为(, )或(,2);(3)P的坐标为(4,0)
【解析】分析: (1)先求得点C的坐标,设抛物线的解析式为y=a(x+1)(x4),将点C的坐标代入求得a的值,从而得到抛物线的解析式;
(2)先求得抛物线的对称轴,然后求得CD,EF的长,设点N的坐标为(0,a)则ND=4a,NE=a,然后依据相似三角形的性质列出关于a的方程,然后可求得a的值;
(3)过点A作AD∥y轴,过点M作DM∥x轴,交点为D,过点A作AE⊥AM,取AE=AM,作EF⊥x轴,垂足为F,连结EM交抛物线与点P.则△AME为等腰直角三角形,然后再求得点M的坐标,从而可得到MD=2,AD=6,然后证明∴△ADM≌△AFE,于是可得到点E的坐标,然后求得EM的解析式为y=2x+8,最后求得直线EM与抛物线的交点坐标即可.
详解:
(1)当x=0时,y=4,∴C(0,4).
设抛物线的解析式为y=a(x+1)(x﹣4),将点C的坐标代入得:﹣4a=4,解得a=﹣1,
∴抛物线的解析式为y=﹣x2+3x+4.
(2)x==.∴CD=,EF=.
设点N的坐标为(,a)则ND=4﹣a,NE=a.
当△CDN∽△FEN时, ,即,解得a=,
∴点N的坐标为(, ).
当△CDN∽△NEF时, ,即,解得:a=2.
∴点N的坐标为(,2).
综上所述,点N的坐标为(, )或(,2).
(3)如图所示:过点A作AD∥y轴,过点M作DM∥x轴,交点为D,过点A作AE⊥AM,取AE=AM,作EF⊥x轴,垂足为F,连结EM交抛物线与点P.
∵AM=AE,∠MAE=90°, ∴∠AMP=45°.
将x=1代入抛物线的解析式得:y=6, ∴点M的坐标为(1,6). ∴MD=2,AD=6.
∵∠DAM+∠MAF=90°,∠MAF+∠FAE=90°, ∴∠DAM=∠FAE.
在△ADM和△AFE中, ,
∴△ADM≌△AFE.
∴EF=DM=2,AF=AD=6.
∴E(5,﹣2).
设EM的解析式为y=kx+b.
将点M和点E的坐标代入得: ,
解得k=﹣2,b=8,
∴直线EM的解析式为y=﹣2x+8.
将y=﹣2x+8与y=﹣x2+3x+4联立,解得:x=1或x=4.
将x=4代入y=﹣2x+8得:y=0.∴点P的坐标为(4,0).
点睛: 本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,相似三角形的性质、等腰直角三角形的性质、全等三角形的性质,通过作辅助线构造等腰直角三角形、全等三角形求得点E的坐标是解题的关键.
科目:初中数学 来源: 题型:
【题目】如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求OC的长;
(2)求四边形OBEC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形ABCD中, ,其周长为32,则菱形面积为____________.
【答案】
【解析】分析:根据菱形的性质易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在Rt△AOB中,根据勾股定理可得OA=4,继而求得AC=2AO=,再由菱形的面积公式即可求得菱形ABCD的面积.
详解:∵菱形ABCD中,其周长为32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD为等边三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根据勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面积为: =.
点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.
【题型】填空题
【结束】
17
【题目】如图,在△ABC中, , AC=BC=3, 将△ABC折叠,使点A落在BC 边上的点D处,EF为折痕,若AE=2,则的值为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知单项式x3ya与单项式﹣5xby是同类项,c是多项式2mn﹣5m﹣n﹣3的次数.
(1)写出a,b,c的值;
(2)若关于x的二次三项式ax2+bx+c的值是3,求代数式2019﹣2x2﹣6x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法)
(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的面积为16cm2,对交线交于点O;以AB、AO为邻边作平行四边AOC1B,对角线交于点O1,以AB、AO1为邻边作平行四边形AO1C2B,…;依此类推,则平行四边形AO4C5B的面积为( )
A. cm2 B. 1cm2 C. 2cm2 D. 4cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克, =609千克,亩产量的方差分别是=29.6, =2.则关于两种小麦推广种植的合理决策是( )
A. 甲的平均亩产量较高,应推广甲
B. 甲、乙的平均亩产量相差不多,均可推广
C. 甲的平均亩产量较高,且亩产量比较稳定,应推广甲
D. 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P为线段AB上任意一点,延长PD到E,使DE=2PD,再以PE、PC为边作平行四边形PCQE,求对角线PQ的最小值为______________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com