【题目】某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:
(1)这四个班共植树棵;
(2)补全两幅统计图;
(3)求图1中“甲”班级所对应的扇形圆心角的度数;
(4)若四个班级所种植的树成活了190棵,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵.
科目:初中数学 来源: 题型:
【题目】若抛物线y=ax2+bx+c如图所示,下列四个结论:
①abc<0;②b﹣2a<0;③a﹣b+c<0;④b2﹣4ac>0.
其中正确结论的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若 的长为 ,则图中阴影部分的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果一个 与 的函数图像经过平移后能与某反比例函数的图像重合,那么称这个函数是 与 的“反比例平移函数”.
例如: 的图像向左平移2个单位,再向下平移1个单位得到 的图像,则 是 与 的“反比例平移函数”.
(1)若矩形的两边分别是2cm、3cm,当这两边分别增加 cm、 cm后,得到的新矩形的面积为8 ,求 与 的函数表达式,并判断这个函数是否为“反比例平移函数”.
(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3) .点D是OA的中点,连接OB、CD交于点E,“反比例平移函数” 的图像经过B、E两点.则这个“反比例平移函数”的表达式为;这个“反比例平移函数”的图像经过适当的变换与某一个反比例函数的图像重合,请写出这个反比例函数的表达式 .
(3)在(2)的条件下, 已知过线段BE中点的一条直线 交这个“反比例平移函数”图像于P、Q两点(P在Q的右侧),若B、E、P、Q为顶点组成的四边形面积为16,请求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.
(1)求点C的坐标;
(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在等腰△ABC中,AB=AC,F为AB边上的中点,延长CB至D,使得BD=BC,连接AD交CF的延长线于E.
(1)如图1,若∠BAC=60°,求证:△CED为等腰三角形
(2)如图2,若∠BAC≠60°,(1)中结论还成立吗?若成立,请证明,若不成立,请说明理由.
(3)如图3,当 =是(直接填空),△CED为等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图从一个建筑物的A处测得对面楼BC的顶部B的仰角为37°,底部C的俯角为45°,观察点与楼的水平距离AD为40m,求楼BC的高度(参考数据:sin37°≈0.60;cos37°≈0.80;tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当tan∠AEC= ,BC=8时,求OD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,体育场内一看台与地面所成夹角为30°,看台最低点A到最高点B的距离为10,A,B两点正前方有垂直于地面的旗杆DE.在A,B两点处用仪器测量旗杆顶端E的仰角分别为60°和15°(仰角即视线与水平线的夹角)
(1)
求AE的长;
(2)已知旗杆上有一面旗在离地1米的F点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com