精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,

(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图2所示,在1所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)在2的条件下,若直线y=﹣2x﹣2分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.

【答案】
(1)

【解答】解:如图1,∵AB与x轴平行,

根据抛物线的对称性有AE=BE=1,

∵∠AOB=90°,

∴OE=AB=1,

∴A(﹣1,1)、B(1,1),

把x=1时,y=1代入y=ax2得:a=1,

∴抛物线的解析式y=x2

A、B两点的横坐标的乘积为xAxB=﹣1


(2)

xAxB=﹣1为常数,

如图2,过A作AM⊥x轴于M,BN⊥x轴于N,

∴∠AMO=∠BNO=90°,

∴∠MAO+∠AOM=∠AOM+∠BON=90°,

∴∠MAO=∠BON,

∴△AMO∽△BON,

∴OMON=AMBN,

设A(xA,yA),B(xB,yB),

∵A(xA,yA),B(xB,yB)在y=x2图象上,

∴,yA=,yB=

∴﹣xAxB=yAyB=

∴xAxB=﹣1为常数;


(3)

设A(m,m2),B(n,n2),

如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.

,即,整理得:mn(mn+1)=0,

∵mn≠0,∴mn+1=0,即mn=﹣1.

设直线AB的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.

∵m,n是方程的两个根,∴mn=﹣b.

∴b=1.

∵直线AB与y轴交于点D,则OD=1.

易知C(0,﹣2),OC=2,∴CD=OC+OD=3.

∵∠BPC=∠OCP,∴PD=CD=3.

设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.

在Rt△PDG中,由勾股定理得:PG2+GD2=PD2

即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,

解得a=0(舍去)或a=

当a=时,﹣2a﹣2=

∴P().


【解析】(1)如图1,由AB与x轴平行,根据抛物线的对称性有AE=BE=1,由于∠AOB=90°,得到OE=AB=1,求出A(﹣1,1)、B(1,1),把x=1时,y=1代入y=ax2得:a=1得到抛物线的解析式y=x2 , A、B两点的横坐标的乘积为xAxB=﹣1
(2)如图2,过A作AM⊥x轴于M,BN⊥x轴于N得到∠AMO=∠BNO=90°,证出△AMO∽△BON,得到OMON=AMBN,设A(xA , yA),B(xB yB),由于A(xA , yA),B(xB , yB)在y=x2图象上,得到yA=,yB=,即可得到结论;
(3)设A(m,m2),B(n,n2).作辅助线,证明△AEO∽△OFB,得到mn=﹣1.再联立直线m:y=kx+b与抛物线y=x2的解析式,由根与系数关系得到:mn=﹣b,所以b=1;由此得到OD、CD的长度,从而得到PD的长度;作辅助线,构造Rt△PDG,由勾股定理求出点P的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC是圆O的直径,AB、AD是圆O的弦,且AB=AD,连结BC、DC.
(1)求证:△ABC≌△ADC;
(2)延长AB、DC交于点E,若EC=5cm,BC=3cm,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系中任意两点P1(x1 , y1)、P2(x2 , y2),称|x1﹣x2|+|y1﹣y2|为P1、P2两点的直角距离,记作:d(P1 , P2).P0(2,﹣3)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P0 , Q)的最小值为P0到直线y=kx+b的直角距离.若P(a,﹣3)到直线y=x+1的直角距离为6,则a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在刚刚闭幕的2016全国“两会”,民生话题依然是社会焦点,某市记者为了了解百姓对“两会民生话题”的聚焦点,随机调查了部分市民,并对调查结果进行整理.绘制了如图所示的统计图表(不完整).
頻数分布表

组别

焦点话题

频数(人数)

A

医疗卫生

100

B

食品安全

m

C

教育住房

40

D

社会保障

80

E

生态环境

n

F

其他

60

请根据图表中提供的信息解答下列问题:
(1)填空:m= , n= . 扇形统计图中E组,F组所占的百分比分别为
(2)该市现有人口大约800万,请你估计其中关注B组话题的人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人关注A组话题的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).

(1)画出△ABC关于y轴对称的△A1B1C1
(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2 , 请在图中画出△A2BC2 , 并求出线段BC旋转过程中所扫过的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.

(1)从运动开始,当t取何值时,PQ∥CD?
(2)从运动开始,当t取何值时,△PQC为直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.
(1)求每个足球和每个篮球的售价;
(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).
表1

一班

5

8

8

9

8

10

10

8

5

5

二班

10

6

6

9

10

4

5

7

10

8

表2

班级

平均数

中位数

众数

方差

及格率

优秀率

一班

7.6

8

a

3.82

70%

30%

二班

b

7.5

10

4.94

80%

40%


(1)在表2中,a= ,b=
(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;
(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图:

(1)成绩x在什么范围的人数最多?是多少人?
(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少?
(3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.

查看答案和解析>>

同步练习册答案