【题目】如图1,在平面直角坐标系中,点O为坐标原点,点A(3a,2a)在第一象限,过点A向x轴作垂线,垂足为点B,连接OA,S△AOB=12,点M从O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.
(1)求a的值;
(2)当0<t<2时,
①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;
②试判断四边形AMON的面积是否变化?若不变化,请求出其值;若变化,请说明理由。
(3)当OM=ON时,请求出t的值。
【答案】(1)a=2;(2)①∠ANM=∠OMN+∠BAN,理由见解析. ②四边形AMON的面积不变,理由见解析. (3)t= 或6
【解析】
1)根据△AOB的面积列出方程即可解决问题;
(2)当0<t<2时①∠ANM=∠OMN+∠BAN.如图2中,过N点作NH∥AB,利用平行的性质证明即可.②根据S四边形AMON=S四边形ABOM-S△ABN,计算即可;
(3)由OM=ON,得到2t=63t或2t=3t6,求出答案.
(1)如图1中,
∵S△AOB=12,A(3a,2a),
∴ ×3a×2a=12,
∴a =4,
又∵a>0,
∴a=2.
(2)当0<t<2时
①∠ANM=∠OMN+∠BAN,原因如下:
如图2中,过N点作NH∥AB,
∵AB⊥X轴
∴AB∥OM
∴AB∥NH∥OM
∴∠OMN=∠MNH
∠BAN=∠ANH
∴∠ANM=∠MNH+∠ANH=∠OMN+∠BAN.
②S四边形AMON=12,理由如下:
∵a=2
∴A(6,4)
∴OB=6,AB=4,OM=2tBN=3t
ON=63t
∴S四边形AMON=S四边形ABOMS△ABN,= (AB+OM)×OB×BN×AB= (4+2t)×6×3t×4=12+6t6t=12,
∴四边形AMON的面积不变
(3)∵OM=ON
∴2t=63t或2t=3t6
∴t= 或6.
科目:初中数学 来源: 题型:
【题目】如图,点M、N分别是正方形ABCD的边CD、CB上的动点,满足DM=CN,AM与DN相交于点E,连接CE,若正方形的边长为2,则线段CE的最小值是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线AC,BD相交于点O,点O关于直线CD的对称点为E,连接DE,CE.
(1)求证:四边形ODEC为菱形;
(2)连接OE,若BC=2,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).
(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1 ,使它与△OAB的相似比为2:1,并分别写出点A、B的对应点A1、B1的坐标.
(2)画出将△OAB向左平移2个单位,再向上平移1个单位后的△O2A2B2 ,并写出点A、B的对应点A2、B2的坐标.
(3)判断△OA1B1与△O2A2B2 ,能否是关于某一点M为位似中心的位似图形,若是,请在图中标出位似中心M,并写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,在平面直角坐标系中,直线与轴、轴分别交于A、B两点,动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,当其中一点到达终点时,另一点也随之停止运动.设点P运动的时间为t(秒).
(1)直接写出A、B两点的坐标.
(2)当△APQ与△AOB相似时,求t的值.
(3)设△APQ的面积为S(平方单位),求S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长 AO交⊙O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题:
(1)求证:CD是⊙O的切线;
(2)若平行四边形OABC的两边长是方程的两根,求平行四边形OABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点E、F分别在直线AB、CD上,点G、H在两直线之间,线段EF与GH相交于点O,且有∠AEF+∠CFE=180°,∠AEF﹣∠1=∠2,则在图中相等的角共有( )
A. 5对B. 6对C. 7对D. 8对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大型企业为了保护环境,准备购买、两种型号的污水处理设备共10台,用于同时治理不同成分的污水,若购买型6台,型4台需112万,购买型4台,型6台则需108万元.
(1)求出型、型污水处理设备的单价;
(2)经了解,一台型设备每月可处理污水220吨,一台型设备每月可处理污水190吨,如果该企业计划用不超过106万元的资金购买这两种设备,而且使这两种设备每月的污水处理量不低于2005吨,请通过计算说明这种方案是否可行.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年9月,某手机公司发布了新款智能手机,为了调查某小区业主对该款手机的购买意向,该公司在某小区随机对部分业主进行了问卷调查,规定每人只能从A类(立刻去抢购)、B类(降价后再去买)、C类(犹豫中)、D类(肯定不买)这四类中选一类,并制成了以下两幅不完整的统计图,由图中所给出的信息解答下列问题:
(1)扇形统计图中B类对应的百分比为 %,请补全条形统计图;
(2)若该小区共有4000人,请你估计该小区大约有多少人立刻去抢购该款手机.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com