精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于(

A.1cm
B.2cm
C.3cm
D.4cm

【答案】D
【解析】解:∵AC⊥BC,AE为∠BAC的平分线,DE⊥AB,
∴CE=DE,
在Rt△ACE和Rt△ADE中,

∴Rt△ACE≌Rt△ADE(HL),
∴AD=AC,
∵AB=7cm,AC=3cm,
∴BD=AB﹣AD=AB﹣AC=7﹣3=4cm.
故选:D.
根据角平分线上的点到角的两边的距离相等可得CE=DE,再利用“HL”证明Rt△ACE和Rt△ADE全等,根据全等三角形对应边相等可得AD=AC,然后利用BD=AB﹣AD代入数据进行计算即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买3个温馨提示牌和4个垃圾箱共需580元,且每个温馨提示牌比垃圾箱便宜40元.

(1)问购买1个温馨提示牌和1个垃圾箱各需多少元?

(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8000元,问最多购买垃圾箱多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(  )

A. 5a4·2a=7a5 B. (-2ab)2=-4a2b2

C. 2x(x-3)=2x2-6x D. (a-2)(a+3)=a2-6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读
(1)阅读理解:

如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师给学生出了一道题:当x=2019,y=2018时,求[2x(x2yxy2)+xy(2xyx2)]÷x2y的值.题目出完后,小明说:“老师给的条件y=2018是多余的.”小颖说:“不给这个条件,就不能求出结果,所以不是多余的.”你认为他们谁说得有道理,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能判定直线a与b平行的是(

A.∠1=∠2
B.∠2=∠3
C.∠3=∠5
D.∠3+∠4=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在体育健康测试中,有8名男生引体向上的成绩(单位:次)分别是:14128916127,这组数据的中位数和众数分别是( )

A. 1012 B. 1211 C. 1112 D. 1212

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为10cm,点A是线段OP的中点,且OP=25cm,则点A和⊙O的位置关系是(
A.点A在⊙O内
B.点A在⊙O上
C.点A在⊙O外
D.无法确定

查看答案和解析>>

同步练习册答案