精英家教网 > 初中数学 > 题目详情
已知x1,x2是方程x2-(2k-1)x+(k2+3k+5)=0的两个实数根,且x12+x22=39,则k的值为
 
考点:根与系数的关系,根的判别式
专题:计算题
分析:先根据判别式的意义得到△=(2k-1)2-4(k2+3k+5)≥0,解得k≤-
19
16
,再根据根与系数的关系得到x1+x2=2k-1,x1x2=k2+3k+5,接着把已知条件变形得到(x1+x22-2x1x2=39,则(2k-1)2-2(k2+3k+5)=39,解得k1=-3,k2=8,然后根据k的范围确定k的值.
解答:解:根据题意得△=(2k-1)2-4(k2+3k+5)≥0,解得k≤-
19
16

∵x1+x2=2k-1,x1x2=k2+3k+5,
而x12+x22=39,
∴(x1+x22-2x1x2=39,
∴(2k-1)2-2(k2+3k+5)=39,
整理得k2-5k-24=0,
解得k1=-3,k2=8,
而k≤-
19
16

∴k=-3.
故答案为-3.
点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-
b
a
,x1x2=
c
a
.也考查了根的判别式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,直线AB交x轴于A点,交y轴于B点,点C是直线AB上一动点.

(1)若∠OAB比∠OBA大20°,OC⊥AB,求∠AOC的度数;
(2)如图2,AM平分∠BAO,BM平分∠OBN,当A点在x轴负半轴上运动时,∠AMB的值是否发生变化?若不变求出∠AMB的度数;若变化请说明理由;
(3)如图3,若∠OAB=45°,且∠OPA=∠BPD,∠BDP=∠ODF,则下列两个结论:
 ①DF∥AB,②DF⊥OP,其中只有一个结论是正确的,请你指出正确的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知三角形的三边长分别为a,b,c,且满足
a-3
+|b-5|=0,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:|
1
2
-
1
3
|+|
1
3
-
1
4
|+|
1
4
-
1
5
|+…+|
1
2014
-
1
2015
|=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

梯形ABCD,AD∥BC,BD为对角线,E、F分别是AB、CD的中点,EF交BD于O,若FO-EO=3,则BC-AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第9个等式
 

查看答案和解析>>

科目:初中数学 来源: 题型:

化简:
36
9
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知3+b
2
=2a-
2
2
5
,其中a,b为有理数,则a=
 
,b=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知m为数9+
15
的小数部分,n为数9-
15
的小数部分,求(m+n)2013的值.

查看答案和解析>>

同步练习册答案